a2 United States Patent

Hartz et al.

US009213513B2

US 9,213,513 B2
Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

MAINTAINING SYNCHRONIZATION OF
VIRTUAL MACHINE IMAGE DIFFERENCES
ACROSS SERVER AND HOST COMPUTERS

Inventors: George Hartz, Salem, NH (US); Eric
Fontana, Shrewsbury, MA (US); David
Fusari, Groton, MA (US)

Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1131 days.

Appl. No.: 11/689,190

Filed: Mar. 21, 2007
Prior Publication Data
US 2007/0300221 Al Dec. 27, 2007

Related U.S. Application Data

Provisional application No. 60/839,157, filed on Aug.
22, 2006, provisional application No. 60/816,288,
filed on Jun. 23, 2006.

Int. Cl1.

GO6F 3/12 (2006.01)

HO4L 29/08 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC GO6F 3/1288 (2013.01); GO6F 3/1222

(2013.01); GOG6F 3/1238 (2013.01); HO4L
67/28 (2013.01); HO4L 67/2823 (2013.01)
Field of Classification Search
None
See application file for complete search history.

Host Computer
2202

User B VM
Differences
2304

Base VM T e
Image L e Enterprise
300 T { Network
- 2202
5 e
User A VM yd
Differences /
Host Computer
2204
Base VM

(56) References Cited
U.S. PATENT DOCUMENTS

5,754,306 A * 5/1998 Tayloretal. 358/400

5,961,582 A 10/1999 Gaines

6,182,136 Bl 1/2001 Ramanathan et al.

6,397,242 Bl 5/2002 Devine et al.

6,496,847 Bl 12/2002 Bugnion et al.

6,704,925 Bl 3/2004 Bugnion

6,711,672 Bl 3/2004 Agesen

6,725,289 Bl 4/2004 Waldspurger et al.

6,735,601 Bl 5/2004 Subrahmanyam

6,771,290 Bl 8/2004 Hoyle

6,785,886 Bl 8/2004 Lim et al.

6,789,156 Bl 9/2004 Waldspurger

6,795,966 Bl 9/2004 Lim et al.

6,854,009 Bl 2/2005 Hughes

(Continued)
FOREIGN PATENT DOCUMENTS
EP 1293886 3/2003 e, GO6F 3/12
GB 2378535 A 2/2003
(Continued)
OTHER PUBLICATIONS

Brian Madden, “Providing Windows Applications to Users: Nine
Different Theories and Architectures,” http://www.brianmadden.
com/content/article/Providing-Windows-Applications-to-Users-
Nine-Different-Theories-and-Architectures, 19 pages, Mar. 14,
2006.

(Continued)

Primary Examiner — Eric C Wai
(74) Attorney, Agent, or Firm — Jessica Meyers; Danielle
Johnston-Holmes; Micky Minhas

(57) ABSTRACT

A virtual printer driver or proxy printer driver executed by a
virtual machine communicates with a real printer driver
executed by a host computer to enable application programs
executed by the virtual machine to print data on printers that
are accessible by the host computer.

20 Claims, 27 Drawing Sheets

File Server 2206
O S EE—

User AVM User A

Differences
2302 Other Files

~ } o _ ///

User B VM
Differences |Other Files
2304

UserB

User C VM
Differences | oier Files

2306

UserC

US 9,213,513 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,880,022 Bl 4/2005 Waldspurger et al.

6,895,501 Bl 5/2005 Salowey

6,944,699 Bl 9/2005 Bugnion et al.

6,954,852 B2 10/2005 Burokas et al.

6,961,806 B1 11/2005 Agesen et al.

6,961,941 B1 11/2005 Nelson et al.

7,028,305 B2 4/2006 Schaefer

7,069,413 Bl 6/2006 Agesen et al.

7,082,598 Bl 7/2006 Le et al.

7,089,377 Bl 8/2006 Chen

7,111,086 Bl 9/2006 Ecoleston et al.

7,111,145 Bl 9/2006 Chen et al.

7,117,481 B1 10/2006 Agesen et al.

7,181,744 B2* 2/2007 Shultzetal. 718/104

7,397,362 B2 7/2008 Zhang et al.

7,506,170 B2 3/2009 Finnegan

8,225,314 B2* 7/2012 Martins etal.cceoon... 718/1
2002/0103811 Al 8/2002 Fankhauser et al.
2003/0103236 Al 6/2003 Katoccooveviveieienrnnn 358/1.15

2003/0217111 Al
2004/0163087 Al
2005/0039180 Al

11/2003 McKay
8/2004 Sandland et al.
2/2005 Fultheim et al.

2005/0063005 Al* 3/2005 Phillipsetal. 358/1.15
2005/0198488 Al 9/2005 Sandland et al.

2005/0225791 Al* 10/2005 Leecccccovvivvviininne. 358/1.14
2006/0015316 Al 1/2006 Siahaanetal. 703/27

2006/0041761 Al
2006/0190489 Al
2007/0054741 Al
2007/0079307 Al

2/2006 Neumann et al.

8/2006 Vohariwatt et al.

3/2007 Morrow et al.

4/2007 Dhawan et al.

2007/0094659 Al* 4/2007 Singhetal.ccccooernrennne. 718/1
2007/0211739 Al 9/2007 Schrock

2008/0301678 Al* 12/2008 Bottcheretal. 718/100
2009/0172136 Al 7/2009 Schulz et al.

FOREIGN PATENT DOCUMENTS

GB 2387254 A 10/2003

JP 2006/079446 A 3/2006

KR 2005/0005317 A 1/2005

WO WO 01/96990 A2 12/2001
OTHER PUBLICATIONS

Authorized Officer David Mazur, PCT/US2007/069508, Interna-
tional Search Report, 9 pages, Feb. 18, 2008.

“Achieving Endpoint Security—With VMware ACE”, VMWARE,
Jul. 2, 2007, 1-2.

“Active Directory”, Active Directory—Wikipedia, the free encyclo-
pedia, http://en.wikipedia.org/wiki/Active_ Directory, accessed
May 12,2011, 9 pages.

“Best Practices for Setting Up VMware ACE”, VMware Technical
Note, 2005, 1-16.

“Better Server Virtualization with Intel Architecture”, Intel
Virtualization Technology, http://www.intel.com/business/bss/prod-
ucts/server/virtualization/htm, 2006, 1-3.

“Configuring a Primary Desktop Environment”, VMware Technical
Note, 2005, 1-16.

“Full Version: Use Sysprep.exe Tool to Automate an Install of XP”,
4peeps.com Forums, http://4peeps.com/ivb/lofiversion/index.php/
t2638.html, Jan. 15, 2003, 1-3.

“GINA Chaining with the MetaFrame Password Manager Agent”,
http://support.citrix.com/article/CTX 103185, accessed May 12,
2011, 2 pages.

“How to Prepare Images for Disk Duplication with Sysprep”,
Microsoft TechNet, http:/technet.microsoft.com/en-us/library/
bb457067(printer).aspx, accessed May 12, 2011, 3 pages.

“How to Use Sysprep for Auditing Installations”, Microsoft TechNet,
http://technet.microsoft.com/en-us/library/bb490860(printer).aspx,
accessed May 12, 2011, 2 pages.

“How to Use Sysprep in Factory Mode”, Microsoft TechNet, http://
technet.microsoft.com/en-us/library/bb457069(printer).aspx,
accessed May 12, 2011, 3 pages.

“How to Use Sysprep to Automate Mini-Setup”, Microsoft TechNet,
http://technet.microsoft.com/en-us/library/bb45707 S(printer).aspx,
accessed May 12, 2011, 2 pages.

“How to Use Sysprep to Restore the Computer to an End-User-Ready
State”, http://technet.microsoft.com/en-us/library/
bb457080(printer).aspx, accessed May 12, 2011, 2 pages.

“How to Use Sysprep: An Introduction”, Microsoft TechNet, http://
technet.microsoft.com/enus/library/bb457073(printer).aspx,
accessed May 12, 2011, 3 pages.

“How to Use the Sysprep Tool to Automate Successful Deployment
of Windows XP”, http://support.microsoft.com/kb/302577, accessed
May 13, 2011, 6 pages.

“Image: ActiveDirectoryMMC.png”, Wikipedia, May 1, 2006, 2
pages.

“Implications of Virtualization for Image Deployment”, Power Solu-
tions, Oct. 2004, 102-104.

“Kerberos Building Blocks”, http://docs.hp.com/en/T1417-90001/
chOls03 html, 2006, 1-3.

“Kerberos Security in Windows Server 2003”, Ticket Granting Ticket
(TGT), http://computerperformance.co.uk/w2k3/Security
Kerberos.htm, accessed May 12, 2011, 3 pages.

“Kerberos Tickets and How They Work”, http://www.upenn.edu/
computing/pennkey/use/tktmgrhtml, accessed May 13, 2011, 1
page.

“Providing Secure, Managed Endpoints on Unmanaged PCs”,
VMware Secured Managed Endpoint, http://www.vmware.com/so-
lutions/desktop/endpoint/html, 2006, 1-2.

“RSA SecurlD 6.0 Agent Replaces the Standard Windows GINA”,
Citrix.com, http://support.citrix.com/article/CTX 107408, accessed
May 12, 2011, 1 page.

“Specify a Replacement GINA Authentication DLL”, http://www.
petools.com/guides/registry/detail/945/, accessed May 12, 2011, 2
pages.

“Stream Desktop Applications”, Citrix Systems, http://www.citrix.
conVEnglish/ps2/technology/feature.asp?contentID=22714, Not
later than Jun. 6, 2006, 1 page.

“Support Hosted Virtual Desktops” Softricity, http://www.softricity.
com/solutions/virtualdesktops.asp, 2006, 1-4.

“Symantec Ghost Solution Suite”, Data Sheet Systems Administra-
tion, May 2006, 1-4.

“Symantec Ghost Solution Suite”, Ghost Solution Suite: Product
Overview Symantec Corp., http://www.symantec.com/business/
ghost-solution-suite, accessed May 12, 2011, 4 pages.

“Symantec Ghost”, Symantec, 2004, 1-6.

“The System Preparation Tool (Sysprep) in Windows XP: an Over-
view”, Killian’s Guide, http://www.oocities.org/kilian0072002/
sysprep/sysprep.html, accessed May 13, 2011, 12 pages.

“Using Imaging to Deploy Microsoft Windows Server 2003”7, Power
Solutions, Nov. 2003, 84-87.

“Using Sysprep to Create XP Pro Images”, UEA, http://www.uea.ac.
uk/itcs/software/xp/xp-sysprep.html, Aug. 11, 2001, 1-5.
“Virtualization Overview”, VMware—White Paper, 2006, 11 pages.
“Virtualization: Architectural Considerations and Other Evaluation
Criteria”, VMware—White Paper, 2005, 14 pages.

“VMWare Ace—A Method to Distribute Virtual Machines”,
TechWorld, http://www.techworld.com/reviews/index.
cfm?reviewID=332&printerfriendly=1, Sep. 22, 2005, 1-2.
“VMware Ace—The Assured Computing Environment for the Enter-
prise”, VMware Ace Product DataSheet, 2006, 2 pages.

“VMware Ace—The Assured Computing Environment for the Enter-
prise”, Administrators Manual, 2006, 1-270.

“VMware Infrastructure Architecture Overview”, VMware—White
Paper, 2006, 14 pages.

“What is Virtualization?”, VMware Virtualization, http://www.
vmware.com/virtualization/what-is-virtualization html, accessed
May 12, 2011, 2 pages.

“Windows Login”, Raak Technologies, http://www.raaktechnolo-
gies.com/solutions/windows__login.html, accessed May 13, 2011, 1
page.

“Windows XP: Automating Deployment Using Sysprep”, http://
www.myitforum.com/articles/11/view.asp?id=4392, accessed May
12,2011, 8 pages.

US 9,213,513 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“GINA”, Wikipedia, the free encyclopedia, http://en. wikipedia.org/
wiki/Gina, accessed May 12, 2011, 1 page.

Bradshaw et al., “A Scalable Approach to Deploying and Managing
Appliances”, Teragrid 2007 Conference, Madison, W1, 2007, 1-6.
Brown, “Customizing GINA, Part 17, MSDN Magazine, http://msdn.
microsoft.com/enus/magazine/cc163803(printer).aspx, accessed
May 12,2011, 7 pages.

Brown, “Customizing GINA, Part 2, MSDN Magazine, http://msdn.
microsoft.com/enus/magazine/cc163786(printer).aspx, accessed
May 12,2011, 8 pages.

Burt, “VMware Takes Virtual Machines Mobile”, eWeek Enterprise
News and Reviews, http://www.eweek.com/c/a/Desktops-and-Note-
books/VMware-Takes-Virtual-MachinesMobile/, accessed May 13,
2011, 3 pages.

England et al., “Virtual Machines for Enterprise Desktop Security”,
Information Security Technical Report, Dec. 5, 2006, 193-202.
Figueiredo et al., “A Case for Grid Computing on Virtual Machines”,
Proceedings of the 23rd International Conference on Distributed
Computing Systems(ICDCS’03), May 19, 2003, 23, 10 pages.
Garfinkel et al., “Terra: A Virtual Machine-Based Platform for
Trusted Computing”, In Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles, Bolton Landing, Oct.
19-22, 2003, 14 pages.

Keahey et al., “Virtual Playgrounds: Managing Virtual Resources in
the Grid”, Parallel and Distributed Processing Symposium, 2006, 8
pages.

Keahey et al., “Contextualization: Providing One-click Virtual Clus-
ters”, IEEE Fourth International Conference on eScience, Dec. 7-12,
2008, 8 pages.

Kozuch et al., “Internet Suspend/Resume”, Fourth IEEE Workshop
on Mobile Computing Systems and Applications, Jun. 1, 2002, 8
pages.

Kozuch et al., “Seamless Mobile Computing on Fixed Infrastruc-
ture”, Computer, IEEE Service Center, Jul. 2004, 37(7), 9 pages.
Lopez et al., “Providing Secure Mobile Access to Information Serv-
ers with Temporary Certificates”, Computer Networks, Nov. 10,
1999, 31(21), 2287-2292.

Norton, “Using Virtual Linux Servers”, Computer, IEEE Service
Center, Nov. 2002, 35(11), 106-107.

PCT Application No. PCT/US2007/069508: International Prelimi-
nary Report on Patentability and Written Opinion of the International
Searching Authority, Jan. 6, 2009, 6 pages.

PCT Application No. PCT/US2007/069509: International Prelimi-
nary Report on Patentability and Written Opinion of the International
Searching Authority, Jan. 20, 2009, 35 pages.

PCT Application No. PCT/US2007/069509: International Search
Report, Jul. 4, 2008, 7 pages.

Reynolds, “How a Kerberos Logon Works in Windows 20007, http://
www.serverwatch.com/tutorials/article.php/2176201/How-a-
Kerberos-Logon-Works, accessed May 13, 2011, 4 pages.
Roudebush, “vThere—A Second Look”, RoudyBob.net, http://www.
roudybob.net/?p=307, accessed Nov. 12, 2007, 4 pages.

Ruth et al., Virtual Distributed Environments in a Shared Infrastruc-
ture, May 2005, 38(5), 63-69.

Sapuntzakis et al., “Virtual Appliances in the Collective: A Road to
Hassle-Free Computing”, Computer Systems Laboratory, Stanford
University, May 18, 2003, 6 pages.

Sugerman et al., “Virtualizing /O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor”, Proceedings of the 2001 USENIX
Annual Technical Conference, Jun. 25-30, 2001, 15 pages.

Zhao et al., “Distributed File System Support for Virtual Machines in
Grid Computing”, High Performance Distributed Computing, Jun. 4,
2004, 202-211.

“Providing Windows Applications to Users: Nine Different Theories
and Architectures,” http://www.brianmadden.corniprintable.
asp?id=566 Mar. 14, 2006 (Doc#566) pp. 1-6.

* cited by examiner

U.S. Patent Dec. 15, 2015 Sheet 1 of 27 US 9,213,513 B2
Host (Real) Computer 100
- - 106
Virtual Machine -
112
Application
120 108
Application
122
: Virtual
Operating System Computer
118 User Interface
117
Virtual Hardware
114
Virtualization Program Host Operating System
110 104
Y
~ R
N
Virtual
Computer Real Hardware 102
Image
116
N—

(Prior Art)
Fig. 1

U.S. Patent Dec. 15, 2015 Sheet 2 of 27 US 9,213,513 B2

User Interface
202

Y
S

Virtual Machlr}lfeozlage Creation R Virtual Machine

Image
20 116

N

="

M—

Operating
System
Virtual Machine Components
204 206

©
=N

MNe—]

Application
Program
Components

(Prior Art) 8
Fig. 2

US 9,213,513 B2

Sheet 3 of 27

Dec. 15, 2015

U.S. Patent

Vit
sjusuodwo)

wesboid
uoneo)|ddy

¢ "bi4

TIE
sjusuodwo?)
wejsig
Bunelsado

Sie
101

SUIYOBIN [ENMIA

8le

202
uayo|
oyoadg-iasn

ol

abew

SUIYOBIN [ENMIA

¥0€

Jabeue| 108loid auIyoe [BnuIA

§]00]

20¢
usyol
olnedg-1esn

b4
Jojelauss) us)o |

01¢

uoneuLIOU|
Psloid

80¢%
eoepa)U| Jasn

U.S. Patent Dec. 15, 2015 Sheet 4 of 27 US 9,213,513 B2

Project Manager/image Creator

Create virtual machine with tools stored on a virtual
storage device

v

Start virtual machine

v

Install operating system and application programs;
customize settings

v

Replace GINA

Remove virtual machine from domain

v

Change administrator password to a predetermined
value (such as blank)
Remove user accounts created when operating system
was installed
Change size of virtual machine’s disk
Create script file for initial startup on end-user's host
computer
Remove page file
Clean up virtual machine’s disk (delete temporary files,
etc.)

v

Save virtual machine state in image file

Fig. 4

U.S. Patent Dec. 15, 2015 Sheet 5 of 27 US 9,213,513 B2

™
vThere™ Image Creator D X

Eile Window Help

Create a New Project from an Existing Project H

Step 1: Select Existing Project:

cwy prd Copying... X
Step 2 _
1.0 versld & _D @

Copying source image

Step 3 V7 |

@ 55 Seconds Remaining

Cancel

Fig. 5A

U.S. Patent

Dec. 15, 2015 Sheet 6 of 27

US 9,213,513 B2

™
vThere™ Image Creator — [1.0.495 Test] @ D

Eile _Project Window Help

o O

Launch Project Edit Settings Backup Project... Create ISO Delete Project....

Project Name: |1.0.495 Test |

Description: | This project is a new gold image with the new
partitioning scheme and split disk images.

Date Last Used: |6/9/2006 3:11:52 PM |

Project Ancestry
Created From: | Split Disk Gold Image |

From Date: | 6/9/2006 3:11:52PM |

From Description: | Thjs project is a new gold image with the new
partitioning scheme and split disk images

System Information
Max Drive Size: | 15360mb |

Partition Size: | Partition sizes are not reported yet |

Memory: | 384mb |

Domain: | |

Organization: | |

Backup
Date Created: | <none> |

Description: | |

Fig. 5B

U.S. Patent

Dec. 15, 2015 Sheet 7 of 27

DVD Creator

Divide virtual machine image file into several (optionally
compressed) files

Encrypt some or all pieces of virtual machine image
(optional)

Create ISO image with virtual machine image file
portions (and optionally player)

Burn computer distribution medium

Fig. 6

US 9,213,513 B2

U.S. Patent Dec. 15, 2015 Sheet 8 of 27 US 9,213,513 B2

Virtual Machine
Image
300

Project
Information
310

Player

Distribution Media
Creator

00

Server
708

Downloadable
Files
06

Computer
Medium
104

End
User
710

Fig. 7

US 9,213,513 B2

Sheet 9 of 27

Dec. 15, 2015

U.S. Patent

8 "big4

vi8
uonosuUUcH

\?Jﬂ.;
028 /

o18
SHOMISN
asudiajug

[}
so0Inosay

Jayio
B sJojuld

grg
Joneg

dvan

jsulsluy|

oy
(=
0

{44 o018
Jo)jluoy sjoo]
NdA
T8 ci8
VYNID weibold Buluoisiroid
808 sulydEN [BNHIA
AN
ve8
s9|i4
6o pejebalbby
\\Ij %
abew| suiyoepy €18
[enuIA psldAioeq
o
%07 —
wnipsiy
Jaindwon
008
JoAe|d
Z08 Jeindwion ysoH

U.S. Patent

Dec. 15, 2015 Sheet 10 of 27

End-User Computer

Install player on end-user’s host computer (associates
token file type with player)

Insert distribution medium (auto-start installs player, if
not already installed)

204

Invoke token (starts player)

206

Decrypt virtual machine image file and copy to host
computer

908

Create virtual machine (according to image file) and start
virtual machine

10

Fig. 9

US 9,213,513 B2

U.S. Patent

Dec. 15, 2015 Sheet 11 of 27

Virtual Machine (First Boot)

Initial startup of operating system (in factory mode).
Automatically log in as administrator.

1000

l

Process script, which starts provisioning program

1002

l

Provisioning program contacts player

1004

)

Player reads information from distribution medium and
token and sends the information to provisional program

=

0!

»

l

Create information file (SYSPREP.INF)

Y

0

jco

l

Reseal operating system. (Will start in mini-setup mode
on next boot)

=

1

o

'

Restart virtual machine

=
o
=
N

Ol

Fig. 10A

US 9,213,513 B2

U.S. Patent

Dec. 15, 2015 Sheet 12 of 27

Operating system (SYSPREP) processes information file
(mini-setup mode)

1014

'

Replaced GINA prompts for user credentials

1016

'

On first user log in, connect VPN

1018

'

Get account credentials farm player and join domain

1020

'

Save user credentials

1022

'

Restart virtual machine

102

1

'

Automatically log in as user, using saved credentials

1026

Fig. 10B

US 9,213,513 B2

U.S. Patent

Dec. 15, 2015 Sheet 13 of 27

User Closes Virtual Machine

Log off user

1100

Close VPN connection

—

1

N

Save virtual machine state
(at operating system logon prompt)

1104

Fig. 11

US 9,213,513 B2

U.S. Patent

Dec. 15, 2015 Sheet 14 of 27

Virtual Machine

Start player

1200

Check virtual machine image for revocation/expiration

1202

Calculate amount of memory in virtual computer

1204

Create virtual machine with calculated memory size and
according to virtual machine image

1208

Fig. 12

US 9,213,513 B2

U.S. Patent Dec. 15, 2015 Sheet 15 of 27 US 9,213,513 B2

Host Computer
802

Virtual Machine
808

Application
1304

Printer Driver
1306

Real Hardware

Port
1302

Printer
1300

(Prior Art)
Fig. 13

U.S. Patent

Dec. 15, 2015 Sheet 16 of 27

Host Computer

US 9,213,513 B2

802
Virtual Machine 813
808
(Player
Application > 800
1402)
Y
r Real
Virtual Printer PDrllir:/t:rr
Driver —
1400 1406

Intermediate Print
Job
Description
1404

Printer
1404

Fig. 14

U.S. Patent Dec. 15, 2015 Sheet 17 of 27 US 9,213,513 B2

Host Computer
802
Virtual Machine 813
808 //
< » Player
800
Application -
1402 l
/ Real
Proxy Printer Driver Printer ,. Printer
1500 Driver 1404
1406

Fig. 15

US 9,213,513 B2

Sheet 18 of 27

Dec. 15, 2015

U.S. Patent

8l8
Janeg

dvai

ol8

yJomiaN
asudisjug

ozZ8
BETNETS

NdA

VI8
uoid8ULCD NdA

}/

vol ‘614

028 lews|

¥091L
(dv)

ul-6ni4
NdA

118
VNIO

808
suIyoB [BNMIA

009t
yod
asn

o9l
usyol
Aunoag

208
Jaindwo) jsoH

US 9,213,513 B2

Sheet 19 of 27

Dec. 15, 2015

U.S. Patent

JoAlog
dvai

918
JIomjeN
esldiejug

¥18
uoRoaUUOD NdA

}/

g9l "614

9z8
Janleg

NdA

28 JauIaju|

c09L
usyol
Aunosg
0091
Hod dsn
Y
¥09l
(1dv) 008
ul-Bnid Jofe|d
NdA
gl8
T8
YNID
808
Sulyoe [BNHIA
208 Jaindwo) jsoH

U.S. Patent

Dec. 15, 2015

Sheet 20 of 27 US 9,213,513 B2

LDAP
Server
818

Host Computer 802

Virtual Machine 808

GINA
811

VPN Plug-In
(API)

1604

Enterprise
Network
816

Player
800

Credentials
Cache

1700

Fig. 17

U.S. Patent

Dec. 15, 2015

Host Computer 802

Application
1810

Player
800

Location
Service
1800

Sheet 21 of 27 US 9,213,513 B2

Integrated Access Server
1804

Enterprise
Network

Virtual Machine
808

Application
1812

Location
Service

1814

Identical
Session IDs
1802

1806

N

Patient Data
1808

N——

Fig. 18

US 9,213,513 B2

Sheet 22 of 27

Dec. 15, 2015

U.S. Patent

61 B4

AN

8081
ejeq jusljed

—

c08l
sq| uolsses
[eopusp

9081
}IoMieN
asudisjug

06l
2o1Alag
uoneso

8061
uoleo|ddy

0061
sulyde |enpIA

¢061
aoIneS
uoneoo

9061
uonesi|ddy

808
SUIYOBIN [ENMIA

008
Jafe|d

208 Joyndwion) 3soH

08l
JaAlag §5900Y pajeibajy

US 9,213,513 B2

Sheet 23 of 27

Dec. 15, 2015

U.S. Patent

oz ‘614

81L0¢
eleq wajed

¢Loc
82IAJOg UONED0T

oloc

P ILTIVETN|
esldiajug

¥1L0¢
JaAIag sS900Y pajelbaju|

sq| Uoissag pajeulpioo)

800¢
ejeq jusied

JomisN
asldisug

¥00¢
JoAlag SS90y pajelBaju|

uones|ddy

0c0c _
Jaddepy

808
euIyOBIA [BNIA

¢00c¢ _—
90IAI8S h%%mm_n_
uoneso
000¢
uoneol|ddy
208 Jeyindwo)) 1soH

US 9,213,513 B2

Sheet 24 of 27

Dec. 15, 2015

U.S. Patent

8L0¢
eje(jusiied

YomieN
asudisjug

1g ‘B4

¥10¢
JanIag ss900Y pejeibaju]

7
)

800¢
ejeq jushed

900¢
YOoMeN
asudisjug

$(| UOISSOg PoJRUIPIOOD
/

'
N

¥061
@oIAIeg
uoleooT

8061
uojjeolddy

0061
sulyoel [entiIA

c06l
8oIAIeg
uonedsoT

J

¥002

JoAIag $5800Y pejeibaly]

5061
uopeol|ddy

808
sulyoR [BNUIA

0c0¢
Jaddepy

008
Jake|d

208 JandwoD 1soH

US 9,213,513 B2

Sheet 25 of 27

Dec. 15, 2015

U.S. Patent

¢z b

aulyoel
[enuIA

80¢¢
(leuondQ) Jantag apndwon

¥0cc
JaindwioD 1soH

giee olce
aulyoey aulyoe\
[ENLIA [eNLIA
$9|l4 JaYI0 (244
aobew| A
s9|l4 Jayi0
L
s9|l4 Jayi0 []%44
abew| NA

90¢¢ JenSS 8|

¢0cc
HomieN
eslidisjug

c0ce
Jaindwo ysoH

US 9,213,513 B2

Sheet 26 of 27

Dec. 15, 2015

U.S. Patent

90¢€¢
Selld 1BWO| saouaiepg
5 1880 WA D J18sn
¥0€C

s9|l4 Jayio| seoussayiq

NA g 488N
g Jesn
Selld JsWo moomwmomt_o
v Jos WA VY Josn

90c¢c J9MIsS 91

¢¢ "By

¢0ce
NJomjaN
asudiejug

00¢€
obew|

INA ©seg

¥0cc
Jaindwon 1soH

00€
ebew

INA ©seg

¢0ce
Jaindwo) 1soH

US 9,213,513 B2

Sheet 27 of 27

Dec. 15, 2015

U.S. Patent

T\

s9]14 JoY10 mSW%Mt_n_

D Jesn \S.E
—

~—
T A
2[4
se|l4 Jayl0| seousiayIg
WA gJesn

g J9sn

se|l4 Jayio mmONWth_D

v Jesn WAV Jesn

90¢¢ Janieg 9|l

vT 'Bid

Y

[[44
HoMmiaN
osudiajug

—~—

AR
ssousJagi(

WA 8 Jesn
N
—
AT 008 N

obew)
INA oseg

<
—~—

y0ce
Jeyndwio) }soH

coee
seousJayIg

WA Y Josn

[{e[44
Jandwo) }soH

US 9,213,513 B2

1
MAINTAINING SYNCHRONIZATION OF
VIRTUAL MACHINE IMAGE DIFFERENCES
ACROSS SERVER AND HOST COMPUTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 60/839,157, filed Aug. 22, 2006, titled
“Remote Network Access Via Virtual Machine,” and U.S.
Provisional Patent Application No. 60/816,288, filed Jun. 23,
2006, titled “Remote Network Access Via Virtual Machine,”
the contents of which are hereby incorporated by reference
herein.

TECHNICAL FIELD

The present invention relates to printing from within vir-
tual machines and, more particularly, to accessing printer
resources provided by real computers from within virtual
machines.

BACKGROUND ART

Many organizations, such as corporations, hospitals and
universities, maintain enterprise computer networks to inter-
connect workstation computers, printers, storage devices and
other network resources. Such networks facilitate users’
access to data and application programs stored on the network
or on other workstations. Such networks also facilitate com-
munication, such as by electronic mail (e-mail), among work-
station users.

Some organizations allow their users to connect remote
workstations, such as home computers, to their enterprise
networks. Such remote connections facilitate working from
home or from some other “off campus” locations. For
example, a doctor may have admitting privileges at several
hospitals. The doctor may find it convenient to be able to
access patient data at all of these hospitals from one or more
locations, such as his/her primary clinical office or from a
workstation in any of the hospitals.

Information technology (IT) organizations prefer to man-
age workstations connected to their respective enterprise net-
works. For example, these organizations typically control
which operating system and which version of the operating
system executes on each workstation. Managed workstations
typically include prescribed anti-virus software. IT policy
may also prohibit users from installing unapproved software
or hardware on users” workstations to minimize the likeli-
hood of malicious software being installed on the worksta-
tions. In general, I'T organizations standardize the worksta-
tions to facilitate maintaining and upgrading the
workstations.

The desire to be able to access an enterprise network from
remote locations and the simultaneous desire to tightly man-
age all workstations connected to the enterprise network pose
problems. A virtual private network (VPN) connection can be
used to interconnect a remote user with an enterprise network.
A VPN connection is a secure computer network connection
between two points. The VPN connection is carried over
another network, typically a public wide area network
(WAN), such as the Internet. Communications between the
end points of a VPN connection are typically encrypted, so
their contents cannot be ascertained by unauthorized nodes
along the WAN. Software at the endpoints operates to estab-
lish a network link (independent of the carrying WAN)

10

15

20

25

30

35

40

45

50

55

60

65

2

between the endpoints. Thus, a VPN connection makes the
exemplary workstation appear as a node on the enterprise
network.

However, connecting a remote user’s computer to an enter-
prise network via a VPN connection poses problems. For
example, such a connection can expose the enterprise net-
work to malicious software on the user’s computer.

One solution to this problem involves executing a managed
virtual machine on a user’s remote (host) computer. The
virtual machine provides protection against malicious soft-
ware that might execute on the host computer. A virtual
machine is instantiated (created) on a host computer by a
virtualization program and a virtual machine image file.
However, the virtual machine image file must be provisioned
(customized) for each remote user. Creating and distributing
such user-specific virtual machine image files is time con-
suming and expensive.

Furthermore, application programs and the like that are
executed by a virtual machine do not have access to printing
resources attached to the host computer, on which the virtual
machine is being hosted.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides a method
of provisioning a customized virtual machine image to a user
on a host computer so as to permit establishment of a virtual
machine on the host computer. The method of this embodi-
ment includes providing a virtual machine image for loading
onto the host computer. This image has an operating system
and as yet is not customized to the user. The method addition-
ally includes providing previously generated customized
configuration data from a source outside of the image for use
by the operating system.

In further related embodiments, the method also includes
determining additional configuration data from predefined
rules and providing the additional data for use by the operat-
ing system. Optionally, the additional configuration data
includes a memory size associated with the virtual machine.

Alternatively or in addition, the virtual machine image also
includes instructions and data for establishing a VPN connec-
tion between the virtual machine and a computer environ-
ment. Optionally, the host computer is unmanaged. Also
alternatively or in addition, the virtual machine image
includes computer instructions establishing an automated
mini-setup procedure for the operating system and the cus-
tomized configuration data include data that are provided as
answers to the automated mini-setup procedure.

In further related embodiments, the virtual machine image
includes computer instructions establishing an authentication
component to implement authentication policy of an interac-
tive logon model, such component prompting for user-sup-
plied credentials necessary for establishing the VPN connec-
tion. Optionally, the authentication component also causes
generation of a log file external to the virtual machine, the log
file containing diagnostic information concerning at least one
application running in the virtual machine. The at least one
application may include the authentication component itself,
a VPN monitor, or a VPN helper or any combination of these
applications. Also alternatively or in addition, the virtual
machine image also includes instructions for causing log out
from the operating system in response closing of a user inter-
face window related to the virtual machine.

Inanother embodiment, the invention provides a method of
providing access by a remote computer to a computing envi-
ronment, such environment having a virtual private network
connection. The method of this embodiment includes provid-

US 9,213,513 B2

3

ing a virtual machine image for loading onto the remote
computer. This image (i) permits establishment of a virtual
machine on the remote computer, (ii) has an operating sys-
tem, (iii) includes instructions and data for establishing a
VPN connection between the virtual machine and a computer
environment, and (iv) is as yet not customized to a specific
user. The method also includes providing previously gener-
ated customized configuration data from a source outside of
the image to the operating system. The configuration data
permits the virtual machine to log in to the environment and
become registered onto a domain of the environment.

The further related embodiments generally correspond to
those discussed above. In further related embodiments, the
method also includes determining additional configuration
data from predefined rules and providing the additional data
for use by the operating system. Optionally, the additional
configuration data includes memory size associated with the
virtual machine.

Optionally, the host computer is unmanaged. Also alterna-
tively or in addition, the virtual machine image includes com-
puter instructions establishing an automated mini-setup pro-
cedure for the operating system and the customized
configuration data include data that are provided as answers
to the automated mini-setup procedure.

In further related embodiments, the virtual machine image
includes computer instructions establishing an authentication
component to implement authentication policy of an interac-
tive logon model, such component prompting for user-sup-
plied credentials necessary for logging onto the VPN connec-
tion. Optionally, the authentication component also causes
generation of a log file external to the virtual machine, the log
file containing diagnostic information concerning at least one
application running in the virtual machine. The at least one
application may include the authentication component itself,
a VPN monitor, or a VPN helper or any combination of these
applications. Also alternatively or in addition, the virtual
machine image also includes instructions for causing log out
from the operating system in response closing of a user inter-
face window related to the virtual machine.

Another embodiment of the invention provides a computer
program product. The product includes a computer-readable
medium on which is stored a virtual machine image for load-
ing onto a host computer. The image has an operating system
that is not as yet customized to a user. In a further related
embodiment the virtual machine image includes computer
instructions for causing customization of the operating sys-
tem to a particular user according to configuration data from
a source other than the computer-readable medium.

An embodiment of the invention provides a method of
accessing a printer that is available through a host computer.
The host computer has a printer driver and a host operating
system, and the host computer executes a virtual machine. In
response to a print request, the method includes producing an
intermediate description of the print request and passing the
intermediate description from the virtual machine to the
printer driver.

In related embodiments, the method also includes storing
the intermediate description on the host computer. The inter-
mediate description may be in a portable document format
(PDF). The intermediate description may be at least one com-
mand, including at least one graphic device interface (GDI)
command.

Another embodiment of the invention provides a computer
printing system. The system includes a host computer execut-
ing a real printer driver. The system also includes a virtual
machine operating within the host computer. The virtual
machine executes a virtual printer driver. The virtual printer

10

15

20

25

30

35

40

45

50

55

60

65

4

driver is operative, in response to a print request, to produce
anintermediate description of the print request and to pass the
intermediate description to the real printer driver.

In related embodiments, the intermediate description
includes a file stored on the host computer. The file may be a
portable document format (PDF) file. The intermediate
description may include at least one command. The at least
one command may include at least one graphic device inter-
face (GDI) command.

An embodiment of the invention provides a method of
automatically obtaining at least one user credential. The
method includes connecting a security token to a port of a host
computer and executing a virtual machine on the host com-
puter. From within the virtual machine, the port is accessed
and data associated with at least one user credential related to
a user is read from the security token. Also from within the
virtual machine, the read data is used to log the user into an
operating system executed by the virtual machine.

Another embodiment of the invention provides a method of
automatically obtaining at least one user credential. The
method includes connecting a security token to a port of a host
computer and executing a virtual machine on the host com-
puter. From within the virtual machine, the port is accessed
and data associated with at least one user credential related to
auser is read from the security token. The read data is used to
establish a network connection between the virtual machine
and a server.

Yet another embodiment of the invention provides a
method of method of automatically obtaining at least one user
credential. The method includes connecting a security token
to a port of a host computer. The method includes executing a
virtual machine on the host computer and executing a virtual
machine player on the host computer. From within the player,
the port is accessed and data associated with at least one user
credential related to a user is read from the security token.
Also from within the virtual machine, the player is accessed
to obtain the read data.

In related embodiments, from within the virtual machine,
the obtained data is used to log the user into an operating
system executed by the virtual machine. In another related
embodiment, from within the virtual machine, the obtained
data is used to establish a network connection between the
virtual machine and a server.

Another embodiment of the invention provides a method of
automatically obtaining at least one user credential. The
method includes executing a host operating system on a host
computer and within the host operating system, caching at
least one user credential related to a user who is logged into
the host operating system. The host computer executes a
virtual machine. From within a virtual machine player, the at
least one cached user credential is obtained from the host
operating system, and the obtained at least one user credential
is used to log the user into an operating system executed by
the virtual machine.

An embodiment of the invention provides a method of
establishing parallel sessions between a host computer and an
integrated access server and between a virtual machine being
executed on the host computer and the integrated access
server. The method includes using a first session identifier to
establish a session between the host computer and the inte-
grated access server and using a second session identifier,
substantially identical to the first session identifier, to estab-
lish a session between the virtual machine and the integrated
access server.

In related embodiments, on the host computer, the first
session identifier is generated, based at least in part on iden-
tification data associated with the host computer. Information

US 9,213,513 B2

5

about the identification data associated with the host com-
puter is communicated from the host computer to the virtual
machine. The communicated information is used to generate
the second session identifier. The identification data associ-
ated with the host computer may be a media access control
(MAC) address of the host computer.

Another embodiment of the invention provides a method of
establishing parallel sessions between a first virtual machine
being executed on a host computer and an integrated access
server and between a second virtual machine being executed
by the host computer and the integrated access server. The
method includes using a first session identifier to establish a
session between the first virtual machine and the integrated
access server and using a second session identifier, substan-
tially identical to the first session identifier, to establish a
session between the second virtual machine and the inte-
grated access server.

In related embodiments, identification data associated with
the host computer is communicated from the host computer to
the first virtual machine. The communicated identification
data is used to generate the first session identifier. The iden-
tification data associated with the host computer is commu-
nicated from the host computer to the second virtual machine.
In addition, the communicated identification data is used to
generate the second session identifier.

The identification data associated with the host computer
may be a media access control (MAC) address of the host
computer. Communicating the identification data from the
host computer to the first virtual machine may include execut-
ing a virtual machine player on the host computer.

Yet another embodiment of the invention provides a
method of coordinating an access request from a computer to
a first integrated access server and an access request from the
computer to a second integrated access server, wherein the
first and the second integrated access servers maintain distinct
universes of patient identifiers. The method includes receiv-
ing a patient identifier that identifies a patient within the
universe of patient identifiers maintained by the first inte-
grated access server and sending the received patient identi-
fier to the first integrated access server. The method also
includes mapping the received patient identifier into a second
patient identifier that identifies the same patient within the
universe of patient identifiers maintained by the second inte-
grated access server and sending the second patient identifier
to the second integrated access server.

Inrelated embodiments, the method may include executing
a virtual machine on a computer. Sending the second patient
identifier may include setting the second patient identifier
from the virtual machine to the second integrated access
server.

An embodiment of the invention provides a method of
executing a virtual machine in a network that includes a
plurality of host computers interconnected to a file server. The
method includes storing a plurality of virtual machine images
on the file server and loading a selected one of the plurality of
virtual machine images from the file server onto a first
selected one of the host computers. The method also includes
executing the loaded virtual machine image on the first
selected one of the host computers.

In related embodiments, storing the plurality of virtual
machine images on the file server may include storing a
plurality of generic virtual machine images on the file server.
Optionally, after loading the selected one of the plurality of
virtual machine images from the file server onto the first
selected one of the host computers, the method may also
include automatically provisioning the virtual machine on the
host computer.

20

25

30

40

45

50

6

In further related embodiments, the method includes sus-
pending execution of the virtual machine on the first selected
one of the host computers and storing information about the
suspended virtual machine on the file server. Suspending
execution of the virtual machine may include suspending
execution of the virtual machine in response to a user com-
mand issued on the first selected one of the host computers or
in response to information stored on the file server or in
response to a remote procedure call.

In yet further related embodiments, the method includes
loading the information about the suspended virtual machine
from the file server onto a second selected one of the host
computers, which is different than the first selected one of the
host computers. The suspended virtual machine may resume
execution on the second selected one of the host computers or
on the file server.

The information about the suspended virtual machine may
be loaded from the file server onto a computer server and
execution of the suspended virtual machine may be resumed
on the compute server.

Information about at least one other suspended virtual
machine may be loaded from the file server onto the compute
server and execution of the at least one other suspended
virtual machine may be resumed on the compute server.

Optionally, the virtual machine on the first selected one of
the host computers may be automatically provisioned. Stor-
ing the plurality of virtual machine images on the file server
may include storing a plurality of generic virtual machine
images on the file server, and the information about the sus-
pended virtual machine may include information about dif-
ferences between a current state of the virtual machine and
one of the generic virtual machine images.

Optionally, storing the plurality of virtual machine images
on the file server may include storing a plurality of generic
virtual machine images on the file server. After loading the
selected one of the plurality of virtual machine images is
loaded from the file server onto the first selected one of the
host computers, the virtual machine on the host computer
may be automatically provisioned. After provisioning the
virtual machine, execution of the virtual machine on the first
selected one of the host computers may be suspended, and
information about differences between a current state of the
virtual machine and one of the generic virtual machine
images may be stored on the first selected one of the host
computers.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood by referring to
the following detailed description in conjunction with the
accompanying drawings, of which:

FIG. 1 is block diagram of a virtual machine operating
within a real computer, according to the prior art;

FIG. 2 is a block diagram of components for creating a
virtual machine image file of FIG. 1, according to the prior
art;

FIG. 3 is a block diagram of components for creating a
virtual machine image file, in accordance with one embodi-
ment of the present invention;

FIG. 4 contains a flowchart of operations related to creating
the virtual machine image file of FIG. 3, in accordance with
one embodiment of the present invention;

FIGS. 5A-B depict an exemplary user interface to one of
the components of FIG. 3, in accordance with one embodi-
ment of the present invention;

US 9,213,513 B2

7

FIG. 6 is a flowchart of operations related to creating com-
puter-readable media that contain the virtual machine image
file of FIG. 3, in accordance with one embodiment of the
present invention;

FIG. 7 is a block diagram of components for creating the
computer-readable media of FIG. 6, in accordance with one
embodiment of the present invention;

FIG. 8 is a block diagram of components for creating a
user-specific virtual machine from the computer-readable
media of FIG. 6, in accordance with one embodiment of the
present invention;

FIG. 9 is a flowchart of operations related to creating the
user-specific virtual machine from the computer-readable
media of FIG. 6, in accordance with one embodiment of the
present invention;

FIGS. 10A-B contain a flowchart of operations performed
by the virtual machine of FIG. 8 the first time the virtual
machine starts, in accordance with one embodiment of the
present invention;

FIG. 11 is a flowchart of operations performed by the
virtual machine of FIG. 8 if an end user closes the virtual
machine, in accordance with one embodiment of the present
invention;

FIG. 12 is a flowchart of operations performed by the
virtual machine of FIG. 8 each time the virtual machine starts,
in accordance with one embodiment of the present invention;

FIG. 13 is a block diagram of a printing system, according
to the prior art;

FIG. 14 is a block diagram of a printing system, in accor-
dance with one embodiment of the present invention;

FIG. 15 is a block diagram of a printing system, in accor-
dance with another embodiment of the present invention;

FIG. 16A is a block diagram of a virtual machine accessing
a security token, in accordance with one embodiment of the
present invention;

FIG. 16B is a block diagram of a virtual machine accessing
a security token, in accordance with another embodiment of
the present invention;

FIG. 17 is a block diagram of a virtual machine accessing
user credentials in a host computer, in accordance with one
embodiment of the present invention;

FIG. 18 is a block diagram of a host computer and a virtual
machine accessing an integrated access server, in accordance
with one embodiment of the present invention;

FIG. 19 is a block diagram of two virtual machines access-
ing an integrated access server, in accordance with one
embodiment of the present invention;

FIG. 20 is a block diagram of a host computer and a virtual
machine accessing two separate integrated access servers, in
accordance with one embodiment of the present invention;

FIG. 21 is a block diagram of two virtual machines access-
ing two separate integrated access servers, in accordance with
one embodiment of the present invention;

FIG. 22 is a block diagram of plural host computers con-
nected to a file server that stores a plurality of virtual machine
images, in accordance with one embodiment of the present
invention;

FIG. 23 is a block diagram of plural host computers con-
nected to a file server that stores a plurality of virtual machine
difference files, in accordance with one embodiment of the
present invention; and

FIG. 24 is a block diagram of plural host computers that
store respective virtual machine difference files, in accor-
dance with one embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

The contents of U.S. Provisional Patent Application No.
60/839,157, filed Aug. 22, 2006, titled “Remote Network

10

40

45

50

65

8

Access Via Virtual Machine,” and U.S. Provisional Patent
Application No. 60/816,288, filed Jun. 23, 2006, titled
“Remote Network Access Via Virtual Machine,” are hereby
incorporated by reference herein.

Definitions

As used in this description and the accompanying claims,
the following terms shall have the meanings indicated, unless
the context otherwise requires:

A “virtual machine” (sometimes herein called “VM”) is a
self-contained software environment on a host computer that
simulates a computer separate from the host computer, pro-
viding at least a degree of system independence from the
hardware and software environment of the host computer,
including the operating system of the host computer.

Virtual Machine

A virtual machine simulates actual computer hardware.
FIG. 11is block diagram of a virtual machine operating within
a real computer, according to the prior art. A host computer
100, such as a personal computer, includes real hardware 102,
such as a basic input/output system (BIOS), one or more
central processing units (CPUs), memory, one or more disk
drives and, optionally, other peripheral devices. The host
computer 100 executes a host operating system 104, such as
the Windows XP operating system available from Microsoft
Corporation, Redmond, Wash. Alternatively, other operating
systems, such as Linux, can be used. The host operating
system controls the real hardware 102 and provides an envi-
ronment 106 in which one or more application programs,
such as application 108, can execute. The host operating
system provides an interface between the application 108 and
the real hardware 102. If the host computer 100 is appropri-
ately equipped, such as with a network interface card (NIC),
the host operating system can establish a network connection
to another computer.

A “virtualization program” 110, is a program that executes
on the host (real) computer 100, typically independently of
the host operating system 104. The virtualization program
creates an environment 112, a “virtual machine” 112 (defined
above), in which other software can be executed. The virtu-
alization program 110 simulates operation of a computer. For
example, the virtualization program 110 provides virtual
hardware 114, including a BIOS, CPU(s), memory, disk
drive(s) and optionally other peripherals to software that
executes on the virtual machine 112.

The configuration of the virtual machine 112, such as the
CPU model, amount of memory, initial contents of the
memory, number of disk drives and their contents, are stored
in a virtual machine image file 116. Upon beginning execu-
tion, the virtualization program 110 reads the virtual machine
image file 116 and creates the virtual machine 112 according
to information in the virtual machine image file 116. Exem-
plary virtualization programs 110 are available from
VMware, Inc., Palo Alto, Calif; Parallels, Inc., Herndon, Va.;
and Microsoft, Inc., Redmond, Wash.

The virtualization program 110 may provide a virtual
machine user interface 117, which executes as an application
in the environment 106 created by the host operating system
104. The virtual machine user interface 117 typically com-
municates with the virtualization program 110, such as to
specify which virtual machine image file 116 the virtualiza-
tion program 110 is to use to create the virtual machine 112.
Once the virtual machine 112 is created, the virtual machine

US 9,213,513 B2

9

user interface 117 displays a window which displays outputs
from the virtual machine 112 and accepts user inputs for the
virtual machine 112.

The virtual machine 112 typically executes software just as
a real computer executes software. For example, the virtual
machine 112 typically executes an operating system 118. The
operating system 118 executed by the virtual machine 112
need not be the same operating system or version as the host
operating system 104 executed by the host computer 100. The
operating system 118 executed by the virtual machine 112
creates an environment 120 in which one or more application
programs, such as application 122, can execute.

The virtualization program 110 simulates interactions
between the software, such as the operating system 118 and
the applications 122, that executes on the virtual machine 112
and the virtualized hardware 114, such as disk drives and
network interface cards (NICs). Thus, the software executed
by the virtual machine 112 has a degree of isolation from
software executed by the host computer 100.

Provisioning a Virtual Machine

FIG. 2 is a block diagram of components for creating the
virtual machine image file 116 of FIG. 1, according to the
prior art. An image creation tool 200 provides a user interface
202, by which a user (typically an information technology
(IT) technician) interacts with the tool 200. In response to
commands and configuration parameters, such as BIOS type,
CPU model, amount of memory, initial contents of the
memory, number and types of disk drive(s), etc., the image
creation tool 200 creates a virtual machine 204.

The image creation tool 200 includes functionality similar
to the virtual machine user interface 117 (FIG. 1). Upon
instruction from the technician, the image creation tool 200
causes the virtual machine 204 to begin executing instruc-
tions, and the user interface 202 allows the technician to
interact with the virtual machine 204. For example, the tech-
nician can instruct the virtual machine 204 to install an oper-
ating system, such as from operating system components 206
stored on computer distribution media. The technician inter-
acts with the operating system installation procedure via the
user interface 202, as though the technician were interacting
with a real computer. This installation procedure is similar to
the procedures performed by computer vendors and/or end
users to provision real computers with information about the
hardware, software, user accounts, etc. of the computers. For
example, during operating system software installation, the
operating system typically performs tests to ascertain what
hardware is connected to the computer. In the case of install-
ing an operating system on a virtual machine 204, the virtu-
alization program 110 simulates virtual hardware 114, so the
operating system configures itself according to the virtualized
hardware available on the virtual machine 204.

In addition, the operating system typically prompts for a
name for the computer, user account information
(username(s) and password(s)), time zone, etc. As noted, the
technician supplies this information via the user interface
202. Setting up the operating systems usually requires the
technician to log in to the virtual machine 204 to perform
some of the setup. For example, once the operating system is
installed, the technician may join the virtual machine 204 to a
domain. The technician may also install one or more appli-
cations on the virtual machine 204, such as from computer
distribution media 208. The technician may also set param-
eters, such as browser favorites/bookmarks, etc., and perform

10

15

20

25

30

35

40

45

50

55

60

65

10

other customizations. Fully setting up the virtual machine
may require restarting the operating system one or more
times.

After the virtual machine 204 is fully set up, the image
creation tool 200 creates the virtual machine image file 116.
The contents of the virtual machine image file 116 may
include a “snapshot” of the virtual machine 204 that defines
the state of the virtual machine. The image creation tool 200
can often set the virtual machine 204 to any state prior to
creating the virtual machine image file 116. For example, the
operating system ofthe virtual machine 204 can be shut down
(viathe user interface 202) and the state of the virtual machine
can be set to “powered down.” Each time the virtual machine
image file 116 is used to instantiate a virtual machine, the
virtual machine starts up in the last state stored in the virtual
machine image file 116.

An exemplary virtual machine image creation tool is avail -
able from VMware, Inc., Palo Alto, Calif. Conventional
image creation tools 200 are difficult to use, due to the amount
of detail, and the complexity of the details, a technician must
provide to the tool. Furthermore, the virtual machine image
files 116 created by such prior-art tools are user-specific. That
is, a given virtual machine image file 116 describes a virtual
machine that has been provisioned with a certain user
account(s) and application(s). Such a virtual machine image
file 116 is generally not useful to another user. Thus, a differ-
ent virtual machine image file 116 must be produced for each
user. Consequently, creating these user-specific virtual
machine image files 116 for all the users who require them
can consume a considerable amount of time and IT resources
(both human and computer resources).

Creating a Generic Virtual Machine

As noted, prior-art systems and methods for creating vir-
tual machine image files pose problems, because these image
files are user-specific, and creating user-specific image files is
time consuming. FIG. 3 is a block diagram of components for
creating a “generic,” i.e., not user-specific, virtual machine
image file 300, in accordance with one embodiment of the
present invention. Copies of this generic virtual machine
image file 300 can be distributed to one or more users, each of
whom can then use an automated procedure (described
below) to generate a user-specific virtual machine image file
(and, thus, a user-specific virtual machine) on his/her remote
computer. The generic virtual machine image file 300 can be
distributed to the users on computer-readable media, such as
a DVD disks. Optionally or alternatively, the generic virtual
machine image file 300 is stored on a server and downloaded
(such as via the Internet) by the users. Each user also receives
or downloads a token 302, which contains a small amount of
user-specific information that is used by the automated pro-
cedure to provision the generic virtual machine image file 300
for the particular user.

An IT technician or system administrator uses a virtual
machine project manager 304 to create the generic virtual
machine image file 300. Operations performed to create the
generic virtual machine image file 300 are summarized in a
flowchart of FIG. 4 and are described in detail below.

First, the virtual machine project manager 304 is used to
create a virtual machine 306 and install an appropriate oper-
ating system, application programs and data and perform
other customizations, as described above. The operating sys-
tem, application programs, etc. are selected to be suitable for
a number of users. Eventually, the virtual machine project
manager 304 “de-configures” the virtual machine. This de-
configuration includes removing user accounts that were cre-
ated while the operating system was being installed on the
virtual machine 306. The operating system is then “resealed.”
Thus, the first time the virtual machine is started on the

US 9,213,513 B2

11

end-user’s host computer, the operating system completes its
configuration, including setting up a user account specific to
the user and performing additional operations described
below. Consequently, the generic virtual machine image 300
does not include user-specific information, such as end-user
account information. Instead, the generic virtual machine
image 300 contains software and/or data that is suitable for a
number of users.

As shown in FIGS. 5A-B, the virtual machine project man-
ager 304 provides a user interface 308 that enables the tech-
nician to create and manage descriptions of different, but
related, virtual machines. Each of these descriptions is
referred to as a “project.”” The descriptions of these projects
are stored in a project data file 310. The projects are related to
each other in a hierarchical (tree) fashion, such that child
nodes of the tree inherit attributes from their respective parent
nodes.

For example, the technician can create one virtual machine
with a first set of applications installed on the virtual machine
and save a description of this virtual machine as a first project.
The technician can then use the first project to create another
virtual machine identical to the first virtual machine, without
creating the second virtual machine from the beginning.
Starting with this second virtual machine, the technician can
add or remove applications or perform other customizations
and save a description of the second virtual machine as
another project in less time than it would take to create the
second virtual machine from the beginning.

Thus, the technician can create a base virtual machine (that
may or may not be suitable for any group of users) and then
use this base virtual machine to create other virtual machines
that are suitable for different groups of users. Alternatively,
the technician can start with a project that describes a virtual
machine suitable for a first group of users (such as doctors)
and create a second project that describes a similar, but suit-
ably different, virtual machine that is suitable for a different
group of users (such as nurses).

Information, such as memory size or disk drive size,
appearing in the fields of FIGS. 5A-B is merely exemplary of
the type of data that can be entered into the virtual machine
project manager 304. The values shown in FIGS. 5A-B are
not meant to provide guidance in selecting values for any
particular project.

In one embodiment of the virtual machine project manager
304, for each project, the technician enters a project name to
identify the project. The technician also enters, or the project
inherits from a parent project, additional information, of the
general type listed in Table 1 and as described below.

TABLE 1

Typical Information for Generic Virtual machine

Pattern for naming each end-user’s virtual machine

Username and password for an account that can be used to add the
end-user’s virtual machine to a domain

Domain end-user’s virtual machine joins

Password for an administrator account on the end-user’s virtual machine

Operating system license key

Initial screen resolution, color depth, ete. of virtual machine

Size of virtual machine memory

Size of virtual machine disk

The pattern for naming the end-user’s virtual machine
referred to in Table 1 can include a concatenation of fixed
character strings and variables that are evaluated when the
virtual machine is created on the end-user’s host computer.
For example, the pattern “XY-
%USERNAME%RANDNUMA4” can indicate that the char-

10

15

20

25

30

35

40

45

50

55

60

65

12

acters “XY-", the end-user’s username and a four-digit ran-
dom number are concatenated together to form the end-user’s
virtual machine name.

In a further embodiment of the present invention, the size
of virtual machine memory referred to in Table 1 specifies a
value that may be adjusted (increased or decreased) each time
the virtual machine starts. This is referred to as “dynamic
memory allocation,” and is described in detail below.

The password for the administrator account is the pass-
word that can be used to log on to an administrator’s account
on the virtual machine, once the virtual machine is opera-
tional on an end-user’s host computer. This administrator
password can, but need not, be the same as the administrator
password used while the operating system, etc. software is
installed on the virtual machine 306.

After the technician enters the information described in
Table 1, the virtual machine project manager 304 creates the
virtual machine 306. The technician interacts with the virtual
machine 306 via the user interface 308 and installs an oper-
ating system and, optionally, applications on the virtual
machine using software installation kits 312 and 314. The
technician can log in to the virtual machine 306 using an
administrator account and password that was established
when the operating system software was installed. However
in a later operation, this administrator account will be
removed, as described below. Computer media that contain
the software installation kits 312 and 314 appear as a virtual
CD 315 or other storage device within the virtual machine
306. The technician can join the virtual machine 306 to a
domain (not shown), if necessary to complete setting up the
virtual machine 306.

Information that is needed by programs that execute on the
virtual machine 306 during the installation of the operating
system, applications, etc. is stored in a directory of tools 316
on the real computer on which the virtual machine project
manager 304 is executing. In addition, the virtual machine
306 is configured to include a virtual CD 318 or other storage
device linked to the directory of tools 316. Consequently,
software executing in the virtual machine 306 can read infor-
mation (on the virtual CD 318) passed to it by the virtual
machine project manager 304. Executable programs (de-
scribed below) are also passed to the virtual machine 306
through the virtual CD 318 for execution within the virtual
machine 306.

For example, the virtual machine project manager 304
includes a tool on the virtual CD 318 to replace, customize or
modify selected portions of the operating system or applica-
tions installed on the generic virtual machine. An operating
system typically includes a graphical identification and
authentication (GINA) or other similar component to imple-
ment an authentication policy of an interactive logon model.
For example, the GINA ascertains if a user is authorized to log
onto acomputer. The GINA is typically invoked as a result of
auser performing a secure attention sequence (SAS), such as
simultaneously pressing the Ctrl, Alt and Del keys on a key-
board. Other SASs, such as an interrupt from a fingerprint
scanner, can be used.

In one embodiment, a tool on the virtual CD 318 replaces
the operating system GINA with a replacement GINA. The
replacement GINA checks user-entered credentials, such as a
username and password. In addition, the GINA normally
establishes a VPN connection between the virtual machine
and an enterprise network and joins the virtual machine to a
domain. However, while configuring the virtual machine 306,
it is sometimes helpful or necessary to isolate the virtual
machine 306 from the enterprise network or the domain. For
example, during portions of the operating system installation,

US 9,213,513 B2

13

the administrator’s password may be blank. However, a
domain policy may prohibit a computer with a blank admin-
istrator’s password from being an active member of the
domain. Consequently, during these portions of the operating
system installation, the virtual machine 306 cannot be con-
nected to the domain.

To accommodate this need, the GINA enables a user (such
as the technician) to select an option, which causes the GINA
to avoid establishing a VPN connection with the enterprise
network. This mode of operation is referred to as “off-line”
mode. In contrast, the default situation, i.e., not selecting this
option and allowing the GINA to establish the VPN connec-
tion, is referred to as “on-line” mode. This option can be
selected by any suitable form of user interface. For example,
the GINA dialog box that prompts for a username and pass-
word can include a check box to select off-line mode. Alter-
natively, a predetermined character, such as a backslash (“\”),
included in the username or another field can invoke the
off-line mode option.

The GINA accepts “pluggable” VPN clients. In this fash-
ion the virtual machine image can be tailored to work with
any of a wide variety of enterprise networks. The GINA for a
particular project is thus equipped with a VPN client appro-
priate to the enterprise network involved.

Once the operating system and applications are installed on
the virtual machine 306 and the technician has made other
changes to make the virtual machine 306 generically suitable
for a group of end-users, an image preparation tool is
executed within the virtual machine 306 to de-configure por-
tions of the operating system. The image preparation tool
accesses information that describes the project and performs
operations of the general type listed in Table 2.

TABLE 2

Typical Operations in Generic Virtual machine Image Preparation

Remove any user accounts that were created

Remove virtual machine from domain

Set administrator account password to a predetermined value,
such as blank

Resize operating system paging file

Clean up virtual machine disk (delete temporary files and other
unnecessary files)

Install SYSPREP program

Create WINBOM.INI file

Create configuration file for starting the VM operating system in
factory mode

The administrator account password is set to a predeter-
mined value (such as blank) to facilitate executing an auto-
matic provisioning process on the virtual machine, when the
end-user firsts starts the virtual machine. The provisioning
process requires administrator privileges, thus the provision-
ing process will need the administrator account password to
log in. The image preparation tool and the provisioning pro-
cess are configured with the same predetermined password
value. Thus, the image preparation tool sets the administrator
account password to the predetermined value, and the provi-
sioning process uses the same password to log in.

To reduce the size of the virtual machine image file, the
image preparation tool adjusts the size of the VM operating
system’s page file, it deletes temporary and other unnecessary
files and it reduces the size of the VM disk. The image prepa-
ration tool sets the page file size to zero, such as by changing
appropriate entries in the operating system registry and
restarting the operating system. When the operating system
restarts, it operates without a page file, and the previously
used page file can be deleted. The image preparation tool then

10

15

20

25

30

35

40

45

50

55

60

65

14

calculates a size for the page file, based on the size of the
(simulated) memory on the virtual machine. The next time the
operating system starts, a page file of this size will be created.

To reduce the size of the VM disk, the image preparation
tool removes unallocated portions of the VM disk so these
portions will not be included in the VM image. In one
embodiment, the image preparation tool reduces the size of
the VM disk by writing a predetermined data pattern, such as
zeros, into the unallocated portions of the VM disk. The
contents of the unallocated portions of the VM disk were
previously unspecified, thus writing the predetermined pat-
tern enables the image preparation tool to distinguish allo-
cated from unallocated portions of the VM disk. The image
preparation tool then deletes the portions of the VM disk that
contain the predetermined data pattern. Consequently, when
the VM image file is produced, only the allocated portions of
the VM disk are included in the VM image.

Software providers typically distribute operating systems
in one form to end users and in another form to value-added
computer resellers (vendors). An operating system for an end
user is typically configured such that the first time the oper-
ating system is started, the operating system prompts the user
for user-specific information, such as a computer name, user-
name, password and time zone. The operating system typi-
cally automatically configures itself for hardware (such as
disk drives, computer network interfaces, etc) that is present
on the computer. This process is commonly referred to as
“hardware discovery.” In addition, the operating system typi-
cally configures itself (such as configuring the size of a paging
file) according to the amount of memory on the computer. For
example, in the Windows operating system from Microsoft,
Inc., this process is referred to as “mini setup.” The operating
system uses user responses to these prompts and automati-
cally determined information to fully configure itself. As
discussed below in connection with an embodiment of the
present invention, the mini setup process can also be driven by
an answer file, rather than accepting user responses and using
hardware discovery.

On the other hand, a vendor typically needs to start an
operating system in order to install software that is to be
bundled with a computer, without executing the mini setup,
because the vendor does not wish to configure the operating
system, i.e., specify the computer name, etc. Software tools,
such as SYSPREP from Microsoft, Inc., enable a vendor to
start an operating system in “factory mode,” i.e., without
executing mini setup. After the vendor installs the bundled
software, the vendor uses SYSPREP to “reseal” the operating
system. Resealing configures the operating system to execute
the mini setup the next time the operating system starts,
presumably when an end-user first starts the computer.

The virtual machine image preparation tool installs
SYSPREP (or equivalent) on the virtual machine and
executes SYSPREP to configure the operating system to start
in factory mode the next time the operating system starts, i.e.,
the first time the operating system starts on the end-user’s
virtual machine. The virtual machine image preparation tool
also creates a WINBOM.INI (or equivalent) file, which will
be used to control operations during the factory mode startup
of'the operating system. The WINBOM.INI includes instruc-
tions to start the provisioning program, such as by invoking a
batch file.

Computer Distribution Medium Generation
After the virtual machine project manager 304 creates the

virtual machine image file 300, a distribution media creator
creates computer media, which can be distributed to end

US 9,213,513 B2

15

users, and/or stores downloadable files on a server, so end
users can download the virtual machine image file, such as via
the Internet. Operations performed by the distribution media
creator are summarized in a flowchart in FIG. 6 and described
in detail below, with reference to a block diagram (in FIG. 7)
of components involved in these operations.

The distribution media creator 700 reads the virtual
machine image file 300 and the project information 310 to
create an ISO image 702 of a computer medium 704 (such as
a DVD disk), which can be distributed to end-users. Alterna-
tively or additionally, the distribution media creator 700
stores one or more files 706 on a server 708 to facilitate
downloading the virtual machine image file by a user 710,
such as via the Internet 712. Typical contents of the distribu-
tion medium 704 (or the downloadable files 706) are summa-
rized in Table 3.

TABLE 3

Typical Distribution Medium Contents

Auto-run program

Virtual machine image file (as a set of files)

Player (virtualization program and related components) (optional)

Project information (encrypted)

Credentials for an administrative account, for use during initial
customization of the VM to a particular user, in joining the
virtual machine to a domain

Distribution medium package contents

The distribution medium creator 700 divides the virtual
machine image file 300 into a set of smaller files, each con-
taining a portion of the virtual machine image file 300. Each
of these smaller files is optionally compressed and/or
encrypted before storing it on the ISO image 702 or server file
706. The virtual machine image file can be large. Thus, stor-
ing the virtual machine image file 300 as a set of smaller files
on the server 708 enables a download to restart at a point of
failure, rather than restarting from the beginning of the virtual
machine image file. Optionally, in a related embodiment of
the present invention, the smaller files may be stored on a
plurality of servers for efficient distribution to users and may
also be distributed using peer-to-peer methods.

As noted, a virtualization program is required to create a
virtual machine from a virtual machine image file. A “player”
is such a virtualization program that includes other capabili-
ties, as described below. The player can be previously
installed on an end-user’s computer or the player can be
distributed with the virtual machine image file on the com-
puter medium 704.

The computer medium 704 includes encrypted project
information, such as the end-user’s virtual machine naming
pattern, virtual machine screen resolution and color depth and
credentials of the account to be used to join a domain. The
computer medium 704 also includes an auto-run program that
automatically executes when a user inserts the computer
medium 704 into his/her computer. This auto-run program
can install the player (if not already installed) and performs
other operations, as described below.

The distribution medium package contents may include
hash values calculated from the files on the distribution
medium, so when the distribution medium is later read, its
contents can be tested for corruption.

Token Generation

The computer medium 704 and the virtual machine image
300 stored on the computer medium 704 is generic. Thatis, no

20

25

40

45

65

16

user-specific information is stored on the computer medium
704. In addition, the virtual machine 306 that would be cre-
ated from the virtual machine image 300 does not have a user
account, computer name or other provisioning that would
make the virtual machine specific to a particular user. This
provisioning will be performed the first time each end user
starts the virtual machine on his/her respective host computer.
To facilitate this provisioning, a token is created for each user
who may use the computer medium 704. Typical components
used to create the tokens are shown in FIG. 3, and typical
contents of a token are listed in Table 4. Some or all of the
contents of a token may be encrypted and can be decrypted
using a suitably provided decryption key.

TABLE 4

Typical Token Contents

Customer identification (for Internet downloading) (optional)

Project name

Token expiration time and date

End-user username

Key for decrypting virtual machine image

Credentials for an administrative account that can join the virtual
machine to a domain (optional)

A token generator 322 reads the project information 322
and accepts user inputs via a user interface 324 to produce the
token 302. In one embodiment of the token generator 322, the
token is a file that contains the information listed in Table 4
formatted as XML text.

The token generator 322 can be included in an IT organi-
zations automated procedure for establishing a user account
or setting up a user computer.

The token can be provided to the end user via any appro-
priate mechanism. For example, the token can be sent as an
e-mail attachment to the end user. Alternatively, the token can
be provided to the end user on a removable computer
medium, such as a flash memory that is connectable to a
computer port, such as a universal serial bus (USB) port.

As noted, in lieu of distribution of the virtual machine
image by a tangible medium such as a DVD, in another
embodiment of the invention, the end user can download the
virtual machine image from a server 708. In a further embodi-
ment, the server 708 may be employed to store virtual
machine images for several different organizations. The cus-
tomer identification in the token 302 can be used to distin-
guish among these organizations. For example, a URL can be
defined for the location of each organizations’ virtual
machine image file. An end user can browse to the appropriate
URL to begin a download process that includes the virtual
machine image associated with the end-user’s organization.
For example, browsing to URL “XYZ.VThere.net” would
begin downloading the virtual machine image file (and asso-
ciated components) for the XYZ organization. The URL can
be provided to end users via any appropriate mechanism, such
asincluding a hyperlink to the URL in an e-mail message sent
to the end users.

Similarly, in lieu of distributing tokens by e-mail or a
tangible medium, the token may be provided as a part of a
URL itself. Base-64 encoded text that would otherwise be
included in the XML token 302 can be included in the URL
provided to the end user, such as in a parameter postpended to
the URL.

Automatically Provisioning End-User Virtual
Machine

Creating and provisioning an end-user’s virtual machine
requires little end-user interaction. Components related to

US 9,213,513 B2

17

creating and provisioning the virtual machine on the end-
user’s host computer are shown in a block diagram in FIG. 8,
and operations related to creating the virtual machine are
shown in a flowchart of FIG. 9. As noted, the computer
medium 704 includes an auto-run program, which installs
904 the player 800 on the end-user’s host computer 802, if the
player is not already installed. The player installation proce-
dure creates an association between tokens and the player
800, such that if the user invokes a token, the player automati-
cally processes the token. For example, under the Windows
operating system, the player registers the file type of the token
302 (for example, an extension in the form of “.vttok”, to
avoid confusion with other file names in a Windows XP
operating system environment) and specifies the player 800
as the application program to be executed when a file of this
type is invoked.

Thus, when the end-user invokes 906 the token 302, such as
by double-clicking on the token 302 attached to an e-mail
message 804 (or by clicking on a hyperlink to the token
embedded in the message 804), the player 800 begins pro-
cessing the token. The player 800 uses an appropriate decryp-
tion key to decrypt encrypted portions of the token 302. The
player 800 checks the expiration time and date of the token
302. If the token has not yet expired, the player 800 uses the
key included in the token 302 to decrypt (in a process 908) and
copy the virtual machine image file from the computer dis-
tribution medium 704 (or server) to the host computer 802.
The player 800 also copies other information from the token
302 to the host computer 802.

The player 800 uses the decrypted virtual machine image
file 806 to create and start (in process 910) a virtual machine
808. Operations related to the first start of the virtual machine
808 are shown in a flowchart in FIGS. 10A-B. In process
1000, the virtual machine 808 begins executing the operating
system, which has been configured to start (the first time) in
factory mode, causing automatic login with administrative
privileges, and to execute the provisioning program.

Before creating the virtual machine 808, the player 800
opens a listening port. A provisioning program 812 opens (in
process 1004) a connection 813 to the player’s listening port,
so the provisioning program 812 and the player 800 can
communicate with each other over this connection 813. The
player 800 reads (in process 1006) the project information
from the distribution medium 704 and from the token 302 and
sends this information to the provisioning program 812. This
information includes the computer naming pattern, time
zone, screen resolution and color depth and key for decrypt-
ing the virtual machine image. (The player can ascertain the
time zone from the host operating system on the host com-
puter.) The provisioning program 812 uses this information to
create (in process 1008) a SYSPREP.INF file. For example,
the provisioning program 812 generates a name string for the
virtual machine 808 according to the naming pattern specified
by the technician to the virtual machine project manager 304
(FIG. 3). The provisioning program 812 sets a parameter in
the SYSPREP.INF file to prevent the mini setup process from
prompting for user input and performing hardware discovery.
The provisioning program then reseals (in process 1010) the
operating system. Consequently, the next time the operating
system starts, the operating system will perform the mini
setup procedure.

The provisioning program then restarts (in process 1012)
the virtual machine 808, and the operating system starts (in
process 1014) the mini setup procedure. The mini setup pro-
cedure reads the SYSPREP.INF file created earlier. Conse-
quently, the mini setup procedure does not prompt the user for
information or perform hardware discovery. The user may see

10

15

20

25

30

35

40

45

50

55

60

65

18

the mini setup procedure progress, although the user sees the
input fields already filled in with information from the project
information and the token 302.

Once the mini setup procedure completes, the GINA 811
prompts (in process 1016) the user for credentials, such as a
username and a password. Optionally, if needed to establish a
VPN connection between the virtual machine 808 and the
user’s enterprise network, the GINA 811 prompts for addi-
tional credentials, such as a second username, a second pass-
word and a pseudo-random passcode. (An exemplary system
for providing pseudo-random passcodes is available from
RSA Security, Inc., Bedford, Mass. under the tradename RSA
SecurlD authentication.)

The GINA 811 uses the user-entered credentials to estab-
lish (in process 1018) a VPN connection 814 to the user’s
enterprise network 816. If the VPN connection is refused due
to invalid user credentials, the GINA 811 re-prompts the user
and retries to establish the VPN connection using subse-
quently-entered end-user credentials, optionally up to a pre-
determined number of times.

Once the virtual machine 808 is connected via the VPN
connection to the enterprise network 816, the GINA 811
recognizes this as the first time the user has logged on. Con-
sequently, the GINA 811 communicates with the player 800
to obtain (in process 1020) the credentials of an account that
can be used to join the virtual machine 808 to a domain on the
enterprise network. (Typically, the end-user does not have
sufficient privileges to join a computer to the domain.) As
noted, these credentials are stored on the computer medium
704. The virtual machine 808 then executes a program that
joins the virtual machine 808 to a domain, using the creden-
tials stored on the computer distribution medium 704 and
passed to the program by the player 800 via the connection
813. Until the virtual machine 808 joins a domain, the GINA
811 typically can not ascertain the validity of the user-entered
credentials. However, once the virtual machine 808 joins the
domain, the GINA 811 can validate the user-entered creden-
tials, such as by using an identity store, such as a light-weight
directory access protocol (LDAP) server 818 (FIG. 8). An
exemplary identity store is available from Microsoft, Inc.
under the tradename Active Directory system; however, other
suitable identity stores may be employed.

The GINA 811 saves (in process 1022) the user-entered
credentials and restarts (in process 1024) the virtual machine
808. When the operating system restarts, the GINA 811 auto-
matically re-establishes the VPN connection and logs the
end-user in (in process 1026), using the saved credentials. If
any of the user credentials (such as the pseudo-random pass-
code) have expired, the GINA 811 re-prompts for these cre-
dentials. However, if a fob or other device connected (such as
via a USB port) to the host computer 802 can be interrogated
to obtains these credentials, the GINA 811 automatically does
so. Similarly, if software executing on the host computer 802
can be interrogated for these credentials, the GINA 811 does
SO.

When the virtual machine is shut down, the current state of
the virtual machine is saved in the virtual machine image file
806. Once the user-specific virtual machine image file has
been generated by the automated procedure described above,
the virtual machine image file 806 is considered to have been
provisioned to the user.

Virtual Machine Shutdown

Ifthe end-user shuts down the virtual machine 808, such as
by using the operating system’s shut-down procedure, the
next time the user starts the virtual machine 808, the virtual

US 9,213,513 B2

19

machine 808 starts as though it had just been powered up.
That is, the BIOS startup procedure executes, the operating
system starts up and, eventually, the GINA 811 prompts for
user credentials.

In the prior art, if a user simply “closes” a virtual machine
(such as by clicking on a window “close” icon, typically an
“X” in the virtual machine user interface 117 (FIG. 1)), the
virtualization program “powers down” the virtual machine.
In this case, the next time the user starts the virtual machine,
the virtual machine starts as though it had just been powered
up, as described above.

In one embodiment of the player 800 (FIG. 8), the virtual-
ization program is modified to force logout of the user on the
virtual machine if the end-user attempts to close the virtual
machine 808. In one embodiment, if the user attempts to close
the VM, control is passed to the player 800 to effectuate the
logout; in another embodiment, control is passed to the GINA
to effectuate the logout. For example, a portion of the virtu-
alization program that normally shuts down network opera-
tions can be modified (“hooked”) to pass control to another
program. Operations, according to this modification, are
shown in a flowchart in FIG. 11. Rather than virtually pow-
ering down the virtual machine 808, the player communicates
with the GINA 811, which automatically logs the user off (in
process 1100) and disconnects (in process 1102) the VPN
connection. When the logout and VPN disconnection are
complete, the GINA 811 displays a prompt for user creden-
tials and notifies the player 800. At this point, the player 800
saves the state of the virtual machine 808. The next time the
end-user starts the player to create the virtual machine 808,
the virtual machine does not need to perform a bootstrap
operation and start the operating system. Consequently, the
user credential prompt is displayed quickly.

Virtual Machine Startup

Each time the player 800 is invoked to start a virtual
machine 808, the player 800 can perform a variety of checks
and reconfigure itself to account for changes that might have
been made to the host computer 802 on which it executes.
These operations are summarized in a flowchart in FIG. 12
and described below.

Each time the player 800 is invoked to start (in process
1200) a virtual machine 808, the player 800 optionally veri-
fies (in process 1202) that the virtual machine 808 has not yet
expired or has not been revoked. For example, when the
technician built the generic virtual machine 306 (FIG. 3) or
created the token 302 for this end user, the technician could
have specified an expiration date and time for the virtual
machine. If so, this expiration information is stored in the
project information 310 (if it applies to all end-users of this
virtual machine) or in the token (if it applies to only this
end-user). If the player 800 ascertains that a virtual machine
that it is starting has expired, the player 800 displays an
appropriate error message to the end user. Optionally, the
player 800 sends an e-mail or other type of electronic message
to the IT organization that produced the virtual machine
image. This message includes the project identification, end-
user identification and can also include information about the
virtual machine that expired, such as operating system and
application license information. The IT organization can
“recycle” the software license keys and use them on other
computer or otherwise dispose of them. Optionally, the player
800 also deletes the virtual machine image file 806 from the
end-user’s host computer 802.

Alternatively or in addition, each time the player 800 is to
start a virtual machine, the player 800 may access a server

10

15

20

25

30

35

40

45

50

55

60

65

20

(not shown) associated with the IT organization that created
the virtual machine. On this server, the IT organization posts
information identifying virtual machines that are revoked or
have expired (or, alternatively, virtual machines that have not
been revoked or have not yet expired). This information can
include the serial number of the virtual machine, end-user
information (such as username), project information or any
other suitable information that can be used to identify one or,
if appropriate, more virtual machines. If the information on
the server indicates that the virtual machine has been revoked
or has expired, the player 800 performs operations similar to
those described above.

Virtual machine expiration and/or revocation enable an IT
organization to more easily manage virtual machines. For
example, an IT organization can issue virtual machines to
employees, contractors, vendors and the like and easily dis-
able those virtual machines, without physically retrieving
anything. This is particularly advantageous in the case of
employees, contractors, etc. who work remotely and may
never be present in the organization’s offices. In contrast, if
the IT organization issued a laptop or deskside computer,
when an employee’s employment terminates or a contractor’s
project ends, the organization must retrieve potentially valu-
able hardware to prevent unauthorized access to the organi-
zation’s applications and data.

In addition, each time the player 800 is invoked to start (in
process 1200) a virtual machine 808, the player 800 option-
ally recalculates (in process 1204) the amount of memory the
virtual machine 808 is to have. In a typical virtual machine
arrangement, the physical memory of the host computer 802
is divided (not necessarily equally) between the virtual
machine and the host operating system. As noted, a technician
specifies to the virtual machine project manager 304 the
amount of (simulated) memory that the virtual machine is to
have. However, if insufficient physical memory on the host
computer 802 remains for the host operating system, the host
operating system and applications that execute under it may
perform poorly or may not execute at all.

To calculate the amount of simulated memory on the vir-
tual machine 808, the player begins with the amount of simu-
lated memory that was specified to the virtual machine project
manager 304. If allocating this amount of physical memory to
the virtual machine 808 leaves an insufficient amount of
physical memory for the host operating system, the player
800 reduces the amount of memory allocated to the virtual
machine 808. For example, if less than a predetermined
amount (such as 256 MB), or an amount calculated based on
the software installed on the host computer, of physical
memory is left for the host operating system, the amount of
memory allocated to the virtual machine is reduced by up to
a predetermined amount (such as %3 of the amount specified to
the virtual machine project manager 304). On the other hand,
if more than the predetermined or calculated amount of
memory is left for the host operating system, the amount of
memory allocated to the virtual machine is increased by up to
a predetermined amount (such as %2 of the amount specified to
the virtual machine project manager 304).

Each time the virtual machine 808 is started, the GINA 811
can perform additional checks to ensure the virtual machine is
authorized, not expired and not revoked. For example, the
GINA 811 can communicate via the connection 813 with the
player 800 to ensure the player 800 was distributed with the
computer medium 704 or is otherwise an approved player.
Because several software suppliers provide players, the
GINA 811 can ensure it operates only with an approved
player. If the GINA 811 detects an unauthorized player 800,
the GINA can optionally shut down the virtual machine 808.

US 9,213,513 B2

21

As noted, when the user enters credentials, the GINA 811
normally establishes a VPN connection 814 between the vir-
tual machine 808 and the enterprise network 816. However
sometimes, it is helpful or necessary to isolate the virtual
machine 808 from the enterprise network 816 or the domain.
Embodiments of the present invention permit the virtual
machine 808 to operate in such an isolated mode. For testing
purposes, for example, the GINA 811 enables a technician to
select the option (described above in connection with gener-
ating the generic virtual machine image) that causes the
GINA 811 to avoid establishing a connection with the
domain; this mode of operation is referred to as “off-line”
mode. In a related embodiment, the user (without invoking
administrative privileges) may be permitted to operate the
virtual machine in a “local” mode, in which the GINA 811
similarly avoids establishing a connection with the domain.

Virtual Machine Operation

While the virtual machine 808 is operating with the VPN
connection 814 to the enterprise network 816, a VM monitor
822 monitors the VPN connection 814. If the VPN connection
814 malfunctions or is dropped (such as a result of an error in
an intervening wide-area network 820, such as the Internet),
the VPN monitor 822 notifies the GINA 811, which automati-
cally re-establishes the VPN connection 814. Optionally, the
GINA 811 displays a message to the user.

Various tools, such as the GINA 811 and the VPN monitor
822, execute in the virtual machine 808 to create and maintain
the virtual machine environment in which applications can
execute. The GINA 811, or alternatively, another program,
causes aggregation of log information from these tools, as
well as log information from the virtualization program, and
sends this log information to the player 800 via the connection
813 between the virtual machine 808 and the player 800. The
player 800 stores the log information in an aggregated log file
824 on the host computer 802, which is accessible even if the
virtual machine 808 is not running or if the virtual machine
808 cannot be started. Significantly, an IT technician can use
the aggregated log file 824 on the host computer 802 to
diagnose problems starting or running the virtual machine
808, even if the virtual machine 808 cannot be started.

To facilitate diagnosing problems in the virtual machine
808, the GINA 811 responds to a predetermined signal, such
as the user simultaneously pressing the Ctrl+Alt+Shift+L
keys, by sending any cached log file information to the player
800.

Portable Virtual Machines

A virtual machine image file 806 can be stored on a por-
table memory device, such as a flash memory, that can be
connected to a computer port, such as a USB port. Such a
virtual machine image file 806 can then be carried by a user
and used on various host computers to create the user’s virtual
machine. For example, if a campus or library were equipped
with one or more computers on which copies of the player 800
are installed, an end user could use any available real com-
puter to host his/her virtual machine. Optionally, if an avail-
able real computer does not have the player installed, the
player could be installed from the portable memory device
prior to launching the virtual machine.

Decentralizing Centralized Services

Computer programs that are typically executed by central
servers in an organization can be distributed to otherwise idle

10

15

20

25

30

35

40

45

50

55

60

65

22

computers using the described virtual machines. For
example, an [T organization can create a virtual machine on
each workstation within an enterprise and, optionally, on
remote workstations. Then, the I'T organization can distribute
software that otherwise would be executed by web servers,
e-mail servers and the like to these virtual machines. Users’
workstations are typically under utilized. Consequently, these
computers typically have sufficient resources to execute the
virtual machines and the services discussed above.

Printing

In the prior art, printing from a virtual machine to a printer
connected to a host computer poses problems. Embodiments
of the present invention provide a range of solutions to these
problems. As shown in FIG. 13, according to the prior art, a
virtual machine 808 can access a printer 1300 that is directly
connected, via a port 1302, to a computer 802 that hosts the
virtual machine 808. The port 1302 may be a USB port, a
parallel port or a serial port on the host computer 802. Control
of'the port 1302 is taken away from the host operating system
and given to the operating system being executed on the
virtual machine 808. Among other disadvantages, under this
scheme, application programs (not shown) being executed by
the host computer 802 cannot print to the directly-connected
printer 1300; only application programs (such as application
1304) being executed by the virtual machine 808 can access
the printer 1300. Furthermore, the virtual machine 808 must
be configured with an appropriate device driver 1306 for the
printer 1300; however, the printer type may not be known at
the time the virtual machine 808 is created or provisioned for
a given user, thus the type of device driver may not be known
when the virtual machine 808 is created or provisioned.
Under these circumstances, the appropriate device driver
1306 must be installed later; however, device driver installa-
tion is typically too complex for an end-user to perform.
Furthermore, the end-user typically does not have required
administrator privileges on the virtual machine 808 to install
a device driver.

In any case, only directly-connected printers are accessible
by the virtual machine 808. The virtual machine 808 cannot
access printers that are connected to the host computer 802
via a network connection (other than printers that are part of
a domain that the virtual machine joins).

These and other shortcomings of the prior art can be over-
come in either of two ways. According to the first way, as
shown in FIG. 14, a virtual printer driver 1400 in the virtual
machine 808 accepts print requests (print jobs) from applica-
tion programs, such as application 1402, being executed by
the virtual machine 808. The virtual printer driver 1400 con-
verts the print job into a file 1404, such as a portable document
format (PDF) file. The virtual printer driver 1400 stores the
file 1404 in a convenient location, such as on the hard disk of
the virtual computer 802 or in the virtual computer’s main
memory (suchas in a“RAM drive”). The virtual printer driver
1400 then sends information about the file and the contents of
the file 1404 to the player 800 being executed on the host
computer 802. The player 800 on the host computer 802 then
queues the file 1404 for printing on any printer that is acces-
sible by the host computer 802. The accessible printers
include directly-connected printers (such as printer 1404), as
well as network-connected printers (not shown). A conven-
tional real printer driver 1406 executed by the host computer
802 handles printing the queued file 1404 in a well-known
manner.

Alternatively, as shown in FIG. 15, a proxy printer driver
1500 is executed by the virtual machine 808. The proxy

US 9,213,513 B2

23
printer driver 1500 communicates with the real printer driver
1406, such as via the player 800 and the link 813 between the
virtual machine 808 and the player 800. In this case, the proxy
printer driver 1500 generates and sends graphic device inter-
face (GDI) commands, or commands in another standard
format, to the real printer driver 1406, and the real printer
driver responds to the commands by printing contents on the
printer 1404 or on a network-connected printer (not shown).

Optionally, the virtual printer driver 1400 or the proxy
printer driver 1500 can log (audit) print requests. Thus, for
each print request, the user and application that requested the
print job, the requested printer, along with an identification of
the files, patient, etc. that are to be printed, as well as the time
and date, can be logged.

In addition, the virtual printer driver 1400 or the proxy
printer driver 1500 can implement a security policy that limits
which users and/or which applications can print data to a local
printer outside the enterprise. Such limitations may be useful
in meeting Health Insurance Portability and Accountability
Act (HIPAA) requirements. In addition, if the printer driver
1400 or 1500 detects an unauthorized attempt to print data,
the printer driver can send a message to a central server (not
shown).

Automatic Token Authorization and
Re-Authorization

Asnoted, when a user logs on to a virtual machine, or when
a VPN connection fails and is reestablished, and a fob, smart-
card, or other device that contains user credentials is con-
nected (such as via a USB port) to the host computer, the
GINA 811 (or a plug-in component associated with the GINA
811) can automatically interrogate the fob or other device
(collectively hereinafter “fob”) for the user credentials. This
interrogation can be accomplished using either of two
schemes. In the first scheme, as shown in FIG. 16A, the port
(such as a USB port 1600) is “passed through” to the virtual
machine 808. That is, control of the port 1600 is taken away
from the host operating system and given to the operating
system being executed on the virtual machine 808. The port
1600 is, therefore, accessible by software being executed by
the virtual machine 808, and the GINA 811 (or the plug-in
component 1604) accesses the fob 1602 via the port 1600.

In the second scheme, as shown in FIG. 16B, the host
computer 802 maintains control of the port 1600, and the
player 800 or another component being executed by the host
computer 802 reads information from the fob 1602 and passes
the information to the GINA 811 (or the plug-in component
1604). As noted, one or more software components being
executed by the virtual computer 808 establish a communi-
cation link 813 with the player 800. The GINA 811 (or the
plug-in component 1604) requests user credentials or other
information from the fob 1602 via this communication link
813.

Integrating Login Information with Host Operating
System

The GINA 811 has been described as prompting for a
username and password as part of an authentication proce-
dure. Optionally or alternatively, the GINA 811 can query the
host operating system for credentials related to the user that is
logged in to the host operating system. For example, as shown
in FIG. 17, if the host computer 802 is part of a domain, and
the host computer 802 accesses an identity store, such as an
LDAP server 818, to authenticate the user, and the virtual
machine 808 is joined to the same domain, the virtual

10

15

20

25

30

35

40

45

50

55

60

65

24

machine 808 can query the host operating system, such as a
credentials cache 1700, for the user’s credentials. These cre-
dentials can take the form of a copy of the user’s Kerberos
ticket, for example.

If the host computer 802 is part of a domain, and the host
computer is trusted by the virtual machine 808 to adequately
maintain security, the virtual machine 808 can allow some
interaction between the host computer 802 and the virtual
machine 808 that would be otherwise prohibited. For
example, clipboard copy-and-paste or drag-and-drop opera-
tions between the host computer 802 and the virtual machine
808 may be permitted.

Parallel Sessions with an Integrated Access Server

In hospitals, clinics, doctors’ offices and the like, health-
care providers often use several computer application pro-
grams to access patient data. For example, one application
may provide blood test results, another application may pro-
vide x-ray images and a third application may provide biopsy
test results. Typically, each of these applications requires the
healthcare provider to enter user credentials and to identify a
patient of interest. An “integrated access server” enables the
healthcare provider to log on once and access several appli-
cations. (This is commonly referred to as a “context manage-
ment architecture” (CMA).)

The integrated access server provides the user’s credentials
to each of the applications. In addition, after the user enters a
patient identification, the integrated access server provides
this information to each of the applications, so the healthcare
provider is ensured that all of the applications display results
from the same patient. Typically, applications and the inte-
grated access server operate according to a standard, such as
the Clinical Context Management Specification (CCOW). An
exemplary integrated access server is the Vergence system
from Sentillion, Inc., Andover, Mass. 01810.

Typically, each computer used by a healthcare provider
executes a location service 1800, as shown in FIG. 18. After
the user enters his or her credentials, the location service 1800
provides an identification of the user’s computer 802, such as
the computer’s media access control (MAC) address. The
user’s credentials, together with the computer’s identifica-
tion, form a “session ID” 1802. This session 1D is sent to the
integrated access server 1804, and the integrated access
server 1804 provides access via an enterprise network 1806 to
a shared “data context™ session, which then enables the appli-
cation to access the patient data 1808.

However, a virtual machine 808 has a MAC address that is
distinct from the host computer’s MAC address. Conse-
quently, according to the prior art, the session ID of the host
computer 802 is different than the session ID of the virtual
machine 808. Thus, the integrated access server 1804 treats
the accessing application 1810 on the host computer 802 as
being in a different session than the accessing application
1812 of the virtual machine 808.

In one embodiment of the present invention, the location
service 1814 on the virtual machine communicates with the
player 800 and ascertains the identification (such as the MAC
address) of the host computer 802 or the session ID used by
the host computer 802. Thus, the location service 1814 on the
virtual machine 808 generates a session ID that is substan-
tially identical to the session ID used by the host computer
802. Consequently, the integrated access server 1804 treats
the session of the application 1810 on the host computer 802
as being the same as the session of the application 1812 on the

US 9,213,513 B2

25
virtual machine 808. Of course, the host computer 802 and the
virtual machine 808 can each execute more than one applica-
tion.

Similarly, as shown in FIG. 19, more than one virtual
machine 808 and 1900 can be hosted on a single host com-
puter 802. In this case, the location services 1902 and 1904 in
each of the virtual machines 808 and 1900 communicate with
the player 800 being executed by the host computer 802. The
player 800, or one of the location services 1902 or 1904,
coordinates the session IDs used by the location services
1902 and 1904, such that both virtual machines 808 and 1900
have substantially identical session IDs. Consequently, the
integrated access server 1804 treats the context session for the
application 1906 (which is executed by one of the virtual
machines 808) as the same context as another application
1908 (which is executed by the other virtual machine 1900).

Mapper (Coordinated Patient Identification to
Multiple Integrated Access Servers)

Thus far, parallel sessions between two or more different
(real and/or virtual) computers and a single integrated access
server 1804 have been described. In these contexts, a patient
identification entered by a user identifies a single patient,
regardless of the number or mixture of application programs
being executed by the computers.

A healthcare provider can, however, need to access infor-
mation about a single patient, where the information is stored
in the databases of two or more unaffiliated healthcare facili-
ties. Consequently, a healthcare provider may need to interact
with more than one integrated access server. However, each
healthcare facility, and thus each integrated access server,
maintains data on a different set of patients, and each inte-
grated access server maintains its own set (“universe”) of
patient identifiers. Thus, for example, patient ID 8473625445
in one healthcare facility’s database does not necessarily
represent the same patient as in a different healthcare facili-
ty’s database. Consequently, if parallel sessions are estab-
lished to two or more different integrated access servers,
according to the prior art, a user must enter a patient ID for
each of the integrated access servers. Entering multiple
patient IDs to access data for a single patient is, however,
error-prone. If a healthcare provider inadvertently enters an
incorrect patient ID, the healthcare provider would be pre-
sented with data about two different patients. Similarly, if a
healthcare provider completes working on a first patient’s
data and then selects a second patient in an application that is
connected to one of the integrated access servers, applications
that are connected to the other integrated access server do not
automatically change to the second patient.

FIG. 20 is a block diagram of a system that solves this
problem. The system includes a host computer 802 and a
virtual machine 808. An application 2000 and a location
service 2002 are used to access a first integrated access server
2004 and a corresponding enterprise network 2006 and
patient data 2008. A second application 2010 and a second
location service 2012 executed by a virtual machine 808
access a second integrated access server 2014 and a corre-
sponding second enterprise network 2016 and patient data
2018. Assume that the first integrated access server 2004, the
first enterprise network 2006 and the first patient data 2008
are associated with a first healthcare facility that is not asso-
ciated with the healthcare facility that maintains the second
integrated access server 2014, the second enterprise network
2016 and the second patient data 2018. That is, a patient

10

15

20

25

30

35

40

45

50

55

60

65

26

identification used in one of these healthcare facilities cannot
be used in the other healthcare facility to request data about
the same patient.

A “context participant” is executed by the virtual machine.
The context participant joins the same context as the clinical
applications and is able to detect any changes to that context
that may occur, as well as make changes to that context.
Additionally a context participant is executed on the host
computer that wishes to synchronize context. The context
participants communicate via the player 800 to notify each
other of any changes made in other applications.

A “mapper” 2020 is executed by the virtual machine 808.
The mapper 2020 maps or converts a patient identification
that is used in one of the integrated access servers to a patient
identification, for the same patient, that is used in the other
integrated access server using a defined mechanism, such as
the Agent interface defined by CCOW. Thus, if a user enters
a patient identification into one of the applications 2000 or
2010, the mapper 2020 converts the patient identification,
such that the other of the applications 2010 or 2000 displays
information about the same patient, despite the fact that the
information is fetched for the two applications from unaffili-
ated medical facilities. The patient IDs, user IDs and other
context data sent to the multiple integrated access services
2004 and 2014, and that should be synchronized, are said to
be “coordinated.”

In alternative embodiments, the mapper 2020 can be
executed by the host computer 802, or the mapper 2020 can be
included in the player 800, in the location service 2002 or
2012 or in another component. For example, as shown in FIG.
21, a host computer 802 executes two virtual machines 808
and 1900. Each virtual machine 808 and 1900 executes an
application 1906 and 1908 and a location service 1902 and
1904. In this embodiment, the player 800 includes the mapper
2020.

Transferable (Suspended) Virtual Machines

Virtual machines have been described as being executed by
host computers. In many situations, the user’s provisioned
virtual machine executes on the same host computer each
time the user wishes to use an application that is executed by
the virtual machine. Typically, after the user finishes using the
application, the user logs out or shuts down the virtual
machine. However, in other situations, it would be convenient
to suspend the execution of a virtual machine on one host
computer, transfer the virtual machine to another host com-
puter and resume execution of the virtual machine on the
other host computer. For example, a doctor may use a virtual
machine to access clinical applications on a host computer in
the doctor’s office. If the doctor were to be called to an
emergency room (ER), the doctor may find it convenientto be
able to suspend the virtual machine on the office host com-
puter and resume execution of the virtual machine on a com-
puter in the ER, once the doctor reaches the ER.

FIG. 22 is a block diagram of a system that enables users to
suspend execution of virtual machines and transfer the virtual
machines to different (or back to the same) host computers.
An enterprise network 2200 interconnects a plurality of host
computers 2202,2204, etc., a file server 2206 and (optionally)
a compute server 2208. The file server 2206 stores a plurality
of'folders. Each folder can be associated with a particular user
(such as User A, User B, User C, etc., as shown in FIG. 22), a
particular function (such as general practitioner, nurse, physi-
cal therapist, etc.), or the folders can be organized in any other
desired manner. Each folder stores a provisioned virtual
machine image 2210, 2212, 2214, etc. That is, each virtual

US 9,213,513 B2

27

machine image 2210-2214 has been customized, as described
above, for the respective user, function, etc. The folders can
also store other files associated with the users, functions, etc.

When a user wishes to start a virtual machine, the appro-
priate virtual machine image 2210-2214 is read from the file
server 2206 into the user’s host computer 2202-2204. When
the user wishes to suspend the virtual machine, the user issues
a command, such as to the player (not shown in FIG. 22). The
state of the virtual machine is then stored in the appropriate
virtual machine image 2210-2214. The next time the user
wishes to start the virtual machine, whether on the same host
computer or on a different one of the host computers 2202-
2204, the saved state of the virtual machine is loaded from the
file server 2206 into the host computer the user wishes to use.

Optionally, the host computers 2202-2204 can be mini-
mally configured. That is, the host computers 2202-2204
need not include mass storage devices, such as disks. Instead,
the host computers 2202-2204 can start (bootstrap) using files
stored on the file server 2206 and accessed via the enterprise
network 2200. In addition, the host computers 2202-2204 can
execute a minimal operating system, such as Linux, as long as
the operating system supports execution of the player 800
(not shown).

Optionally or alternatively, the user can instruct the file
server 2206 to resume the virtual machine, either directly
after the virtual machine is suspended on the former host
computer or at a predetermined time or upon the occurrence
of a predetermined event. In this case, the saved state of the
virtual machine is loaded from the file server 2206, and the
file server 2206 is caused to execute the virtual machine, such
as shown at 2216 or 2218. Similarly, the user can instruct the
compute server 2208 to execute the virtual machine, as shown
at 2220. In this way, the user can free up the host computer
2202-2204, and the virtual machine can continue executing
on another host processor, such as on the file server 2206 or on
the compute server 2208.

Optionally, if a predetermined type of virtual machine is
suspended, the virtual machine is automatically transferred to
the file server 2206 or the compute server 2208 to continue
execution. For example, ifthe virtual machine executes media
center software (such as the Windows XP Media Center oper-
ating system from Microsoft, Inc.), it may be desirable to
automatically transfer a suspended virtual machine to another
computer for execution, to minimize interruption of the enter-
tainment (music, video, etc.) provided by the media center
software.

If the user wishes to suspend execution of a virtual
machine, but the user is not proximate the host computer that
is executing the virtual machine (or the user cannot conve-
niently issue a command to the host computer), the user
causes a remote procedure call to be placed to the host com-
puter or a trigger file to be created in the appropriate folder on
the file server 2206. The trigger file can contain commands to
suspend execution of the virtual machine, or the mere exist-
ence of the file can cause the virtual machine to be suspended.
For example, the player on a host computer executing a vir-
tual machine can periodically, such as once per second, or
occasionally check for the existence of, or read the contents
of, the trigger file. If the trigger file exists or contains an
appropriate command, the player suspends the virtual
machine and stores the state of the virtual machine in the
appropriate folder of the file server 2206.

Thus, continuing the previous example of the doctor who
was called from his or her office to the ER, the doctor need not
suspend the virtual machine before leaving his or her office.
Instead, once the doctor reaches the ER, the doctor can issue
a command on a host computer in the ER (such as logging in)

10

15

20

25

30

40

45

55

60

65

28

to cause the trigger file to be created and the virtual machine
(which is still executing on the doctor’s office computer) to be
suspended and transferred to the ER computer. In general, a
user can request a suspended or executing virtual machine to
be transferred to any convenient computer, such as to a com-
puter located near the user’s current location, or to a central
computer, such as the file server 2206 or the compute server
2208.

Alternatively, as shown in FIG. 23, instead of storing each
user’s provisioned virtual machine image 2210-2214 on the
file server 2206, each host computer 2202-2204 stores a
generic base virtual machine image 300. (The generic base
virtual machine image 300 is described above with reference
to FIGS. 3 and 7.) In this case, when a virtual machine is first
started, the virtual machine is provisioned (customized to the
user), as described above. When the virtual machine is sus-
pended or shut down, portions of the virtual machine image
that are different from the base virtual machine image 300 are
stored in the appropriate user’s virtual machine differences
file 2302, 2304 or 2306. Subsequently, when the virtual
machine is restarted or resumed, the differences from the
virtual machine difference file 2302-2306 are used, along
with the base virtual machine image 300, to re-create the
virtual machine.

Optionally, as shown in FIG. 24, the virtual machine dif-
ference files 2302-2306 can be stored on the respective host
computers 2202, etc. instead of or in addition to, storing these
files on the file server 2206. If the virtual machine difference
files 2302-2306 are stored on both the file server 2206 and on
the host computers 2202, etc., these files should at least occa-
sionally be synchronized.

Systems and methods above have been described with
reference to a processor controlled by instructions stored in a
memory. Some of the processes detailed above have been
described with reference to flowcharts. Those skilled in the art
should readily appreciate that functions, operations, deci-
sions, etc. of all or a portion of each block, or a combination
of'blocks, of the flowcharts can be implemented as computer
program instructions, software, hardware, firmware or com-
binations thereof. Those skilled in the art should also readily
appreciate that instructions or programs defining the func-
tions of the present invention can be stored or delivered to a
processor in many forms, including, but not limited to, infor-
mation permanently stored on non-writable, computer-read-
able media (e.g. read only memory devices within a com-
puter, such as ROM, or devices readable by a computer 1/O
attachment, such as CD-ROM and DVD data disks), infor-
mation alterably stored on writable, computer-readable
media (e.g. floppy disks and hard drives) or information con-
veyed to a computer through communication media, includ-
ing computer networks. In addition, while the invention may
be embodied in software, the functions necessary to imple-
ment aspects of the invention may alternatively be embodied
in part or in whole using firmware and/or hardware compo-
nents, such as combinatorial logic, Application Specific Inte-
grated Circuits (ASICs), Field-Programmable Gate Arrays
(FPGAs) or other hardware or some combination of hard-
ware, software and/or firmware components.

While the invention is described through the above-de-
scribed exemplary embodiments, it will be understood by
those of ordinary skill in the art that modifications to, and
variations of; the illustrated embodiments may be made with-
out departing from the inventive concepts disclosed herein.
Moreover, while the preferred embodiments are described in
connection with various illustrative data structures, one
skilled in the art will recognize that the system may be
embodied using a variety of data structures. Accordingly, the
invention should not be viewed as limited, except by the scope
and spirit of the appended claims.

US 9,213,513 B2

29

What is claimed is:

1. A method for execution of a virtual machine (VM), the
method comprising:

suspending execution of the VM in response to determin-

ing to suspend execution of the VM, the VM being
executed for a first user;

after suspending execution of the VM, determining a dif-

ference between the VM and a generic VM image,

wherein the difference between the VM and the generic
VM image includes portions of the VM image that are
different from the generic VM image;

storing, in a file server and in a host computer, one or more

indications of the differences between the VM and the
generic VM image that lacks information specific to the
first user or a second user;

maintaining synchronization of the one or more stored

indications of the differences that are stored in the server
and the host computer;
in response to receiving an indication to resume execution
of'the VM, based on the synchronized stored indications
of'the differences that are stored in the server, combining
the difference between a current state of the VM and the
generic VM image to produce a combined VM, and
executing the combined VM on the host computer; and

in response to receiving an indication to resume execution
of'a second VM for a second user, based on the synchro-
nized stored indications of the differences that are stored
in the host computer, combining a difference between
the second VM and the generic VM image to produce a
second combined VM, and executing the second com-
bined VM on the host computer.

2. The method of claim 1, wherein storing the indications
of the differences between the VM and a generic VM image
comprises:

storing the indications on a first computer;

wherein combining the difference between the VM and the

generic VM image comprises:
combining the difference between the VM and the
generic VM image on a second computer; and
wherein executing the combined VM comprises:
executing the combined VM on the second computer.

3. The method of claim 1, wherein suspending execution of
the VM comprises:

suspending execution of the VM on a first computer; and

wherein storing the indications of the difference between

the VM and a generic VM image comprises:
storing the indications on a second computer.

4. The method of claim 3, wherein suspending execution of
the VM comprises:

suspending execution of the virtual machine in response to

a user command issued locally on the first computer.

5. The method of claim 3, wherein suspending execution of
the virtual machine comprises:

suspending execution of the virtual machine in response to

an indication received by the first computer and from the
second computer.

6. The method of claim 3, wherein suspending execution of
the virtual machine comprises:

suspending execution of the virtual machine in response

receiving a remote procedure call at the first computer.

7. The method of claim 3, further comprising:

loading information about the difference between the VM

and the generic VM image from the second computer
onto a third computer, different than the first computer;
and

executing the combined VM on the third computer.

30

8. The method of claim 3, further comprising:

executing the combined VM on the second computer.

9. A computer-readable storage device for executing a vir-
tual machine (VM), bearing computer-executable instruc-

5 tions, that when executed, cause operations comprising:

suspending execution of the VM in response to determin-

ing to suspend execution of the VM, the VM being
executed for a first user;

after suspending execution of the VM, determining a dif-

ference between the VM and a generic VM image,

wherein the difference between the VM and the generic
VM image includes portions of the VM image that are
different from the generic VM image;

storing, in a file server and in a host computer, one or more

indications of the differences between the VM and the
generic VM image;

maintaining synchronization of the one or more stored

indications of the differences that are stored in the server

20 and the host computer;

in response to receiving an indication to resume execution
of the VM, based on the synchronized stored indications
of'the differences that are stored in the server, combining
the difference between a current state of the VM and the

25 generic VM image to produce a combined VM, and

executing the combined VM; and

in response to receiving an indication to resume execution
of a second VM, based on the synchronized stored indi-
cations of the differences that are stored in the host

30 computer, combining a difference between the second

VM and the generic VM image to produce a second
combined VM, and executing the second combined VM
on the host computer.

10. The computer-readable storage device of claim 9,

35 wherein storing the indications of the differences between the
VM and a generic VM image comprises:

storing the indications on a first computer;
wherein combining the difference between the VM and the
generic VM image comprises:

40 combining the difference between the VM and the

generic VM image on a second computer; and

wherein executing the combined VM comprises:

executing the combined VM on the second computer.
11. The computer-readable storage device of claim 9,

45 wherein suspending execution of the VM comprises:

suspending execution of the VM on a first computer; and
wherein storing the indications of the difference between

the VM and a generic VM image comprises:

storing the indications on a second computer.

50 12. The computer-readable storage device of claim 11,

wherein suspending execution of the VM comprises:
suspending execution of the virtual machine in response to
a user command issued locally on the first computer.
13. The computer-readable storage device of claim 11,
55 wherein suspending execution of the virtual machine com-
prises:
suspending execution of the virtual machine in response to
an indication received by the first computer and from the
second computer.

60 14. The computer-readable storage device of claim 11,
wherein suspending execution of the virtual machine com-
prises:

suspending execution of the virtual machine in response
receiving a remote procedure call at the first computer.

65 15. The computer-readable storage device of claim 11,
further bearing computer-executable instructions that, when
executed, cause operations comprising:

US 9,213,513 B2

31

loading information about the difference between the VM
and the generic VM image from the second computer
onto a third computer, different than the first computer;
and

executing the combined VM on the third computer.

16. The computer-readable storage device of claim 11,
further bearing computer-executable instructions that, when
executed, cause operations comprising:

executing the combined VM on the second computer.

17. A system for executing a virtual machine (VM), com-
prising:

a processor; and

amemory communicatively coupled to the processor when
the system is operational, the memory bearing proces-
sor-executable instructions that, when executed on the
processor, cause the system at least to:
suspend execution of the VM in response to determining

to suspend execution of the VM, the VM being
executed for a first user;
after suspending execution of the VM, determine a dif-
ference between the VM and a generic VM image,
wherein the difference between the VM and the
generic VM image includes portions of the VM
image that are different from the generic VM
image;
store, in a file server and in a host computer, one or more
indications of the differences between the VM and the
generic VM image;
maintain synchronization of the one or more indications
of the differences that are stored in the server and the
host computer;
in response to receiving an indication to resume execu-
tion of the VM, based on the synchronized stored

10

15

20

25

30

32

indications of the differences that are stored in the
server and the host computer, combine the difference
between a current state of the VM and the generic VM
image to produce a combined VM, and executing the
combined VM; and

in response to receiving an indication to resume execu-
tion of a second VM, based on the synchronized
stored indications of the differences that are stored in
the server and the host computer, combine a differ-
ence between the second VM and the generic VM
image to produce a second combined VM, and execut-
ing the second combined VM.

18. The system of claim 17, wherein the instructions that,
when executed on the processor, cause the system at least to
suspend execution of the VM further cause the system at least
to:

suspend execution of the virtual machine in response to a

user command issued locally on a first computer.

19. The system of claim 18, wherein the instructions that,
when executed on the processor, cause the system at least to
suspend execution of the VM further cause the system at least
to:

suspend execution of the virtual machine in response to an

indication received by the first computer and from a
second computer, or in response receiving a remote pro-
cedure call at the first computer.

20. The system of claim 18, wherein the instructions that,
when executed on the processor, cause the system at least to:

load information about the difference between the VM and

the generic VM image from a second computer onto a
third computer, different than the first computer; and
execute the combined VM on the third computer.

#* #* #* #* #*

